40 resultados para Spindle Checkpoint
em University of Queensland eSpace - Australia
Resumo:
The checkpoint kinase Chk2 has a key role in delaying cell cycle progression in response to DNA damage. Upon activation by low-dose ionizing radiation (IR), which occurs in an ataxia telangiectasia mutated (ATM)dependent manner, Chk2 can phosphorylate the mitosis-inducing phosphatase Cdc25C on an inhibitory site, blocking entry into mitosis, and p53 on a regulatory site, causing G, arrest. Here we show that the ATM-dependent activation of Chk2 by gamma- radiation requires Nbs1, the gene product involved in the Nijmegen breakage syndrome (NBS), a disorder that shares with AT a variety of phenotypic defects including chromosome fragility, radiosensitivity, and radioresistant DNA synthesis. Thus, whereas in normal cells Chk2 undergoes a time-dependent increased phosphorylation and induction of catalytic activity against Cdc25C, in NBS cells null for Nbs1 protein, Chk2 phosphorylation and activation are both defective. Importantly, these defects in NBS cells can be complemented by reintroduction of wild-type Nbs1, but neither by a carboxy-terminal deletion mutant of Nbs1 at amino acid 590, unable to form a complex with and to transport Mre11 and Rad50 in the nucleus, nor by an Nbs1 mutated at Ser343 (S343A), the ATM phosphorylation site. Chk2 nuclear expression is unaffected in NBS cells, hence excluding a mislocalization as the cause of failed Chk2 activation in Nbs1-null cells, interestingly, the impaired Chk2 function in NBS cells correlates with the inability, unlike normal cells, to stop entry into mitosis immediately after irradiation, a checkpoint abnormality that can be corrected by introduction of the wild-type but not the S343A mutant form of Nbs1, Altogether, these findings underscore the crucial role of a functional Nbs1 complex in Chk2 activation and suggest that checkpoint defects in NBS cells may result from the inability to activate Chk2.
Resumo:
Dun1p and Rad53p of the budding yeast Saccharomyces cerevisiae are members of a conserved family of cell cycle checkpoint protein kinases that contain forkhead-associated (FHA) domains. Here, we demonstrate that these FHA domains contain 130-140 residues, and are thus considerably larger than previously predicted by sequence comparisons (55-75 residues), In vivo, expression of the proteolytically defined Dun1p FHA domain, but not a fragment containing only the predicted domain boundaries, inhibited the transcriptional induction of repair genes following replication blocks, This indicates that the non-catalytic FI-IA domain plays an important role in the transcriptional function of the Dun1p protein kinase. (C) 2000 Federation of European Biochemical Societies.
Resumo:
Epithelial locomotility is a fundamental determinant of tissue patterning that is subject to strict physiological regulation. The current, study sought to identify cellular signals that initiate cell migration in cultured thyroid epithelial cells. Porcine thyroid cells cultured as 3-dimensional follicles convert to 2-dimensional monolayers when deprived of agents that stimulate cAMP/PKA signaling. This morphogenetic event is driven by the activation of cell-on-substrate locomotility, providing a convenient assay for events that regulate the initiation of locomotion. In this system, the extracellular signal regulated kinase (ERK) pathway became activated as follicles converted to monolayer, as demonstrated by immunoblotting for activation-specific phosphorylation and nuclear accumulation of ERK. Inhibition of ERK activation using the drug PD98059 effectively prevented cells from beginning to migrate. PD98059 inhibited cell spreading, actin filament reorganization and the assembly of focal adhesions, cellular events that mediate the initiation of thyroid cell locomotility. Akt (PKB) signaling was also activated during follicle-to-monolayer conversion and the phosphoinositide 3-kinase (PI3-kinase) inhibitor, wortmannin, also blocked the initiation of cell movement. Wortmannin did not, however, block activation of ERK signaling. These findings, therefore, identify the ERK and PI3-kinase signaling pathways as important stimulators of thyroid cell locomotility. These findings are incorporated into a model where the initiation of thyroid cell motility constitutes a morphogenetic checkpoint regulated by coordinated changes in stimulatory (ERK, PI3-kinase) and tonic inhibitory (cAMP/PKA) signaling pathways. Cell Motil. Cytoskeleton 49:93-103, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
Chk1 kinase coordinates cell cycle progression and preserves genome integrity. Here, we show that chemical or genetic ablation of human Chk1 triggered supraphysiological accumulation of the S phase-promoting Cdc25A phosphatase, prevented ionizing radiation (IR)-induced degradation of Cdc25A, and caused radioresistant DNA synthesis (RDS). The basal turnover of Cdc25A operating in unperturbed S phase required Chk1-dependent phosphorylation of serines 123, 178, 278, and 292. IR-induced acceleration of Cdc25A proteolysis correlated with increased phosphate incorporation into these residues generated by a combined action of Chk1 and Chk2 kinases. Finally, phosphorylation of Chk1 by ATM was required to fully accelerate the IR-induced degradation of Cdc25A. Our results provide evidence that the mammalian S phase checkpoint functions via amplification of physiologically operating, Chk1-dependent mechanisms.
Resumo:
The Epstein - Barr nuclear antigens (EBNA), EBNA-3, -4 and - 6, have previously been shown to act as transcriptional regulators, however, this study identifies another function for these proteins, disruption of the G2/M checkpoint. Lymphoblastoid cell lines (LCLs) treated with a G2/M initiating drug azelaic bishydroxamine ( ABHA) did not show a G2/M checkpoint response, but rather they display an increase in cell death, a characteristic of sensitivity to the cytotoxic effects of the drug. Cell cycle analysis demonstrated that the individual expression of EBNA-3, - 4 or - 6 are capable of disrupting the G2/M checkpoint response induced by ABHA resulting in increased toxicity, whereas EBNA-2, and - 5 were not. EBNA-3 gene family protein expression also disrupted the G2/M checkpoint initiated in response to the genotoxin etoposide and the S phase inhibitor hydroxyurea. The G2 arrest in response to these drugs were sensitive to caffeine, suggesting that ATM/ATR signalling in these checkpoint responses may be blocked by the EBNA-3 family proteins. The function of EBNA-3, - 4 and - 6 proteins appears to be more complex than anticipated and these data suggest a role for these proteins in disrupting the host cell cycle machinery.
Resumo:
A short-term whole-skin organ culture model has been established to enable the investigation of cell cycle perturbations in epidermal layer cells following exposure to ultraviolet radiation (UVR). This model affords the opportunity to manipulate the growth and nutrient conditions, and to perform detailed biochemical and immunohistochemical analysis of skin cells in their normal epidermal layer microenvironment. The use of this model is described in this chapter.
Resumo:
Cells respond to genotoxic insults such as ionizing radiation by halting in the G(2) phase of the cell cycle. Delayed cell death (mitotic death) can occur when the cell is released from G(2), and specific spindle defects form endopolyploid cells (endoreduplication/tetraploidy). Enhanced G(2) chromosomal radiosensitivity has been observed in many cancers and genomic instability syndromes, and it is manifested by radiation-induced chromatid aberrations observed in lymphocytes of patients. Here we compare the G(2) chromosomal radiosensitivity in prostate patients with benign prostatic hyperplasia (BPH) or prostate cancer with disease-free controls. We also investigated whether there is a correlation between G(2) chromosomal radiosensitivity and aneuploidy (tetraploidy and endoreduplication), which are indicative of mitotic cell death. The G(2) assay was carried out on all human blood samples. Metaphase analysis was conducted on the harvested chromosomes by counting the number of aberrations and the mitotic errors (endoreduplication/tetraploidy) separately per 100 metaphases. A total of 1/14 of the controls were radiosensitive in G(2) compared to 6/15 of the BPH patients and 15/17 of the prostate cancer patients. Radiation-induced mitotic inhibition was assessed to determine the efficacy of G(2) checkpoint control in the prostate patients. There was no significant correlation of G(2) radiosensitivity scores and mitotic inhibition in BPH patients (P = 0.057), in contrast to prostate cancer patients, who showed a small but significant positive correlation (P = 0.029). Furthermore, there was no significant correlation between G(2) radiosensitivity scores of BPH patients and endoreduplication/ tetraploidy (P = 0.136), which contrasted with an extremely significant correlation observed in prostate cancer patients (P < 0.0001). In conclusion, cells from prostate cancer patients show increased sensitivity to the induction of G(2) aberrations from ionizing radiation exposure but paradoxically show reduced mitotic indices and aneuploidy as a function of aberration frequency.
Resumo:
1. The present study investigated the effects of lengthening and shortening actions on IT-reflex amplitude. H-reflexes were evoked in the soleus (SOL) and medial gastroenemius (MG) of human subject, during passive isometric, lengthening and shortening actions performed at angular velocities of 0, +/-2, +/-5 and +/- 15 deg s(-1). 2. H-reflex amplitude, in froth SOL and MG were significantly depressed during passive lengthening actions and facilitated during passive shortening actions, when compared with the isometric R-reflex amplitude. 3. Four experiments were performed in which the latencies front the onset of movement to delivery of the stimulus were altered. Passive H-reflex modulation during lengthening actions was found tee begin at latencies of less than 60 ms suggesting that this inhibition was due to peripheral and/or spinal mechanisms. 4. It is postulated that, the H-reflex modulation seen in the present study is related to the tunic discharge of muscle spindle afferents and the consequent effects of transmission within the la pathway. Inhibition of the H-reflex at less than 60 ms after the onset of muscle lengthening may he attributed to several mechanisms, which cannot be distinguished using the current protocol. These may include the inability to evoke volleys in la fibres that are refractory following muscle spindle discharge during; rapid muscle lengthening, a reduced probability of transmitter release front the presynaptic terminal (homosynaptic post.-activation depression) and presynaptic inhibition of la afferents from plantar flexor agonists. Short latency facilitation of the H-reflex may be attributed to temporal summation of excitatory postsynaptic potentials arising from muscle spindle afferents during rapid muscle lengthening. At longer latencies, presynaptic inhibition of Ia afferents cannot be excluded as a potential inhibitory mechanism.
Resumo:
In the G2 phase cell cycle checkpoint arrest, the cdc25-dependent activation of cyclin B/cdc2, a critical step in regulating entry into mitosis, is blocked. Studies in yeast have demonstrated that the inhibition of cdc25 function involves 14-3-3 binding to cdc25, In humans, two cdc25 isoforms have roles in G2/M progression, cdc25B and cdc25C, both bind 14-3-3, Abrogating 14-3-3 binding to cdc25C attenuates the G2 checkpoint arrest, but the contribution of 14-3-3 binding to the regulation of cdc25B function is unknown. Here we demonstrate that high level over-expression of cdc25B in G2 checkpoint arrested cells can activate cyclin B/cdc2 and overcome the checkpoint arrest. Mutation of the major 14-3-3 binding site, S323, or removal of the N-terminal regulatory domain are strong activating mutations, increasing the efficiency with which the mutant forms of cdc25B not only overcome the arrest, but also initiate aberrant mitosis, We also demonstrate that 14-3-3 binding to the S323 site on cdc25B blocks access of the substrate cyclin/cdks to the catalytic site of the enzyme, thereby directly inhibiting the activity of cdc25B, This provides direct mechanistic evidence that 14-3-3 binding to cdc25B can regulate its activity, thereby controlling progression into mitosis.
Resumo:
Cyclin A/cdk2 is active during S and G2 phases of the cell cycle, but its regulation and function during G2 phase is poorly understood. In this study we have examined the regulation of cyclin A/cdk2 activity during normal G2 phase progression and in genotoxin-induced G2 arrest. We show that cyclin A/cdk2 is activated in early G2 phase by a cdc25 activity. In the G2 phase checkpoint arrest initiated in response to various forms of DNA damage, the cdc25-dependent activation of both cyclin A/cdk2 and cyclin B1/cdc2 is blocked. Ectopic expression of cdc25B, but not cdc25C, in G2 phase arrested cells efficiently activated both cyclin A/cdk2 and cyclin B1/cdc2. Finally, we demonstrate that the block in cyclin A/cdk2 activation in the G2 checkpoint arrest is independent of ATM/ATR. We speculate that the ATM/ ATR-independent block in G2 phase cyclin A/cdk2 activation may act as a further layer of checkpoint control, and that blocking G2 phase cyclin A/cdk2 activation contributes to the G2 phase checkpoint arrest.
Resumo:
The contribution of the short wavelength ultraviolet (UV) component of sunlight to the aetiology of skin cancer has been widely acknowledged, although its direct contribution to tumour initiation or progression is still poorly understood. The loss of normal cell cycle controls, particularly checkpoint controls, are a common feature of cancer. UV radiation causes both GI and G2 phase checkpoint arrest in vitro cultured cells. In this study we have investigated the cell cycle responses to suberythemal doses of UV on skin. We have utilized short-term whole organ skin cultures, and multi parameter immunohistochemical and biochemical analysis to demonstrate that basal and suprabasal layer melanocytes and keratinocytes undergo a G2 phase cell cycle arrest for up to 48 h following irradiation. The arrest is associated with increased p16 expression but no apparent p53 involvement. This type of organ culture provides a very useful model system, combining the ease of in vitro manipulation with the ability to perform detailed molecular analysis in a normal tissue environment.
Resumo:
Aberrant movement patterns and postures are obvious to clinicians managing patients with musculoskeletal pain. However, some changes in motor function that occur in the presence of pain are less apparent. Clinical and basic science investigations have provided evidence of the effects of nociception on aspects of motor function. Both increases and decreases in muscle activity have been shown, along with alterations in neuronal control mechanisms, proprioception, and local muscle morphology. Various models have been proposed in an attempt to provide an explanation for some of these changes. These include the vicious cycle and pain adaptation models. Recent research has seen the emergence of a new model in which patterns of muscle activation and recruitment are altered in the presence of pain (neuromuscular activation model). These changes seem to particularly affect the ability of muscles to perform synergistic functions related to maintaining joint stability and control. These changes are believed to persist into the period of chronicity. This review shows current knowledge of the effect of musculoskeletal pain on the motor system and presents the various proposed models, in addition to other shown effects not covered by these models. The relevance of these models to both acute and chronic pain is considered. It is apparent that people experiencing musculoskeletal pain exhibit complex motor responses that may show some variation with the time course of the disorder. (C) 2001 by the American Pain Society.
Resumo:
Forkhead-associated (FHA) domains are modular protein–protein interaction domains of ~130 amino acids present in numerous signalling proteins. FHA-domain-dependent protein interactions are regulated by phosphorylation of target proteins and FHA domains may be multifunctional phosphopeptide-recognition modules. FHA domains of the budding yeast cell-cycle checkpoint protein kinases Dun1p and Rad53p have been crystallized. Crystals of the Dun1-FHA domain exhibit the symmetry of the space group P6122 or P6522, with unit-cell parameters a = b = 127.3, c = 386.3 Å; diffraction data have been collected to 3.1 Å resolution on a synchrotron source. Crystals of the N-terminal FHA domain (FHA1) of Rad53p diffract to 4.0 Å resolution on a laboratory X-ray source and have Laue-group symmetry 4/mmm, with unit-cell parameters a = b = 61.7, c = 104.3 Å.
Resumo:
Exposure to DNA-damaging agents triggers signal transduction pathways that are thought to play a role in maintenance of genomic stability. A key protein in the cellular processes of nucleotide excision repair, DNA recombination, and DNA double-strand break repair is the single-stranded DNA binding protein, RPA. We showed previously that the p34 subunit of RPA becomes hyperphosphorylated as a delayed response (4-8 h) to UV radiation (10-30 J/m(2)). Here we show that UV-induced RPA-p34 hyperphosphorylation depends on expression of ATM, the product of the gene mutated in the human genetic disorder ataxia telangiectasia (A-T). UV-induced RPA-p34 hyperphosphorylation was not observed in A-T cells, but this response was restored by ATM expression. Furthermore, purified ATM kinase phosphorylates the p34 subunit of RPA complex in vitro at many of the same sites that are phosphorylated in vivo after UV radiation. Induction of this DNA damage response was also dependent on DNA replication; inhibition of DNA replication by aphidicolin prevented induction of RPA-p34 hyperphosphorylation by UV radiation. We postulate that this pathway is triggered by the accumulation of aberrant DNA replication intermediates, resulting from DNA replication fork blockage by UV photoproducts. Further, we suggest that RPA-p34 is hyperphosphorylated as a participant in the recombinational postreplication repair of these replication products. Successful resolution of these replication intermediates reduces the accumulation of chromosomal aberrations that would otherwise occur as a consequence of UV radiation.
Resumo:
Genistein is an isoflavenoid that is abundant in soy beans. Genistein has been reported to have a wide range of biological activities and to play a role in the diminished incidence of breast cancer in populations that consume a soy-rich diet. Genistein was originally identified as an inhibitor of tyrosine kinases; however, it also inhibits topoisomerase II by stabilizing the covalent DNA cleavage complex, an event predicted to cause DNA damage. The topoisomerase II inhibitor etoposide acts in a similar manner. Here we show that genistein induces the up-regulation of p53 protein, phosphorylation of p53 at serine 15, activation of the sequence-specific DNA binding properties of p53, and phosphorylation of the hCds1/Chk2 protein kinase at threonine 68. Phosphorylation and activation of p53 and phosphorylation of Chk2 were not observed in ATM-deficient cells. In contrast, the topoisomerase II inhibitor etoposide induced phosphorylation of p53 and Chk2 in ATM-positive and ATM-deficient cells. In addition, genistein-treated ATM-deficient cells were significantly more susceptible to genistein-induced killing than were ATM-positive cells. Together our data suggest that ATM is required for activation of a DNA damage-induced pathway that activates p53 and Chk2 in response to genistein.