11 resultados para Spinacea oleracea
em University of Queensland eSpace - Australia
Resumo:
We evaluated the efficiency of callus induction and plantlet regeneration from hypocotyl explants of broccoli (Brassica oleracea var. italica). The cultivars were ‘Marathon’, ‘Greenbelt’, and ‘Shogun’. Transformation success was not affected by the presence of tobacco feeder-cell layers on the culture media. The frequency of shoot regeneration was greater from 10-d-old hypocotyls than from 14-d-old hypocotyls. Both ‘Marathon’ and ‘Greenbelt’ had higher potentials for tissue regeneration than did ‘Shogun’. We found that for transformation selection, the optimum concentration was either 50 mg/L kanamycin or 100 mg/L genetkin.
Resumo:
We investigated the gene expression profiles of different members of the 1-aminocyclopropane-1-carboxilic acid (ACC) synthase (EC 4.4.1.14) gene family in broccoli (Brassica oleracea L. var. italica) during the post-harvest-induced senescence process. Using RT-PCR, three different cDNAs coding for ACC synthase (BROCACS1, BROCACS2 and BROCACS3) were amplified from floret tissue at the start of the senescence process. The three genes share relatively little homology, but have highly homologous sequences in Arabidopsis thaliana, and could be functionally related to these counterparts. Southern analyses suggest that BROCACS1 and BROCACS3 are present as single copy genes, while there are probably two copies of BROCACS2. All three genes showed different expression patterns: BROCACS1 is likely to be either wound - or mechanical stress-induced showing high transcript levels after harvesting, but no detectable expression afterwards. BROCACS2 shows steady expression throughout senescence, increasing at the latest stages, and BROCACS3 is almost undetectable until the final stages. Our results suggest that BROCACS1 could be required to initiate the senescence process, while BROCACS2 would be the main ACC synthase gene involved throughout the post-harvest-induced senescence. BROCACS3's expression pattern indicates that it is not directly involved in the initial stages of senescence, but in the final remobilization of cellular resources.
Resumo:
Confocal scanning laser microscopic observations were made on live chloroplasts in intact cells and on mechanically isolated, intact chloroplasts. Chlorophyll fluorescence was imaged to observe thylakoid membrane architecture. C-3 plant species studied included Spinacia oleracea L., Spathiphyllum sp. Schott, cv. 'Mauna Loa', and Pisum sativum L. C-4 plants were also investigated: Saccharum officinarum L., Sorghum bicolor L. Moench, Zea mays L. and Panicum miliaceum L. Some Spinacia chloroplasts were treated with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) to enhance or sodium dithionite (SD) to reduce the photosystem II fluorescence signal. Confocal microscopy images of C-3 chloroplasts differed from electron microscopy pictures because they showed discrete spots of bright fluorescence with black regions between them. There was no evidence of fluorescence from stroma thylakoids. The thylakoid membrane system at times appeared to be string-like, with brightly fluorescing grana lined up like beads. C-4 bundle sheath chloroplasts were imaged from three different types of C-4 plants. Saccharum and Sorghum bundle sheath chloroplasts showed homogeneous fluorescence and were much dimmer than mesophyll chloroplasts. Zea had rudimentary grana, and dim, homogeneous intergrana fluorescence was visualised. Panicum contained thylakoids similar in appearance and string-like arrangement to mesophyll chloroplasts. Isolated Pisum chloroplasts, treated with a drop of 5 mM MgCl2 showed a thylakoid membrane system which appeared to be unravelling. Spongy mesophyll chloroplasts of Spinacia treated with 5 mM sodium dithionite showed a granal thylakoid system with distinct regions of no fluorescence. A time-series experiment provided evidence of dynamic membrane rearrangements over a period of half an hour.
Resumo:
Insects are important vectors of diseases with remarkable immune defense capabilities. Hymenopteran endoparasitoids are adapted to overcome the host defense system and, therefore, are useful sources of immune-suppressing proteins. Not much is known about venom proteins in endoparasitoids, especially those that have a functional relationship with polydnaviruses (PDVs). Here, we describe the isolation and characterization of a small venom protein (Vn4.6) from an endoparositoid, Cotesia rubecula, which interferes with the activation of the host hemolymph prophenoloxidose. The coding region for Vn4.6 is located upstream in the opposite direction of a gene coding for a C rubecula PDV-protein (Crp32). Arch. Insect Biochem. Physiol. 53:92-100, 2003. (C) 2003 Wiley-Liss, Inc.
Resumo:
Activation of prophenoloxidase (proPO) in insects is a defense mechanism against intruding microorganisms and parasites. Pattern recognition molecules induce activation of an enzymatic cascade involving serine proteinases, which leads to the conversion of proPO to active phenoloxidase (PO). Phenolic compounds produced by pPO-activation are toxic to invaders. Here, we describe the isolation of a venom protein from the parasitoid, Cotesia rubecula, injected into the host, Pieris rapae, which is homologous to serine proteinase homologs (SPH). The data presented here indicate that the protein interferes with the proteolytic cascade, which under normal circumstances leads to the activation of proPO and melanin formation. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Optical tweezers are widely used for the manipulation of cells and their internal structures. However, the degree of manipulation possible is limited by poor control over the orientation of the trapped cells. We show that it is possible to controllably align or rotate disc-shaped cells-chloroplasts of Spinacia oleracea-in a plane-polarized Gaussian beam trap, using optical torques resulting predominantly from circular polarization induced in the transmitted beam by the non-spherical shape of the cells.
Resumo:
Evidence indicates that cruciferous vegetables are protective against a range of cancers with glucosinolates and their breakdown products considered the biologically active constituents. To date, epidemiological studies have not investigated the intakes of these constituents due to a lack of food composition databases. The aim of the present study was to develop a database for the glucosinolate content of cruciferous vegetables that can be used to quantify dietary exposure for use in epidemiological studies of diet-disease relationships. Published food composition data sources for the glucosinolate content of cruciferous vegetables were identified and assessed for data quality using established criteria. Adequate data for the total glucosinolate content were available from eighteen published studies providing 140 estimates for forty-two items. The highest glucosinolate values were for cress (389 mg/100 g) while the lowest values were for Pe-tsai chinese cabbage (20 mg/100 g). There is considerable variation in the values reported for the same vegetable by different studies, with a median difference between the minimum and maximum values of 5.8-fold. Limited analysis of cooked cruciferous vegetables has been conducted; however, the available data show that average losses during cooking are approximately 36 %. This is the first attempt to collate the available literature on the glucosinolate content of cruciferous vegetables. These data will allow quantification of intakes of the glucosinolates, which can be used in epidemiological studies to investigate the role of cruciferous vegetables in cancer aetiology and prevention.
Resumo:
Maternal factors introduced into host insects by endoparasitoid wasps are usually essential for successful parasitism. This includes polydnaviruses (PDVs) that are produced in the reproductive organ of female hymenopteran endoparasitoids and are injected, together with venom proteins, into the host hemocoel at oviposition. Inside the host, PDVs enter various tissue cells and hemocytes where viral genes are expressed, leading to developmental and physiological alterations in the host, including the suppression of the host immune system. Although several studies have shown that some PDVs are only effective when accompanied by venom proteins, there is no report of an active venom ingredient(s) facilitating PDV infection and/or gene expression. In this study, we describe a novel peptide (Vn1.5) isolated from Cotesia rubecula venom that is required for the expression of C. rubecula bracoviruses (CrBVs) in host hemocytes (Pieris rapae), although it is not essential for CrBV entry into host cells. The peptide consists of 14 amino acids with a molecular mass of 1598 Da. In the absence of Vn1.5 or total venom proteins, CrBV genes are not expressed in host cells and did not cause inactivation of host hemocytes.
Resumo:
Elevated jasmonic acid (JA) concentrations in response to herbivory can induce wounded plants to produce defences against herbivores. In laboratory and field experiments we compared the effects of exogenous JA treatment to two closely related cabbage species on the host-searching and oviposition preference of the diamondback moth (DBM), Plutella xylostella. JA-treated Chinese cabbage (Brassica campestris) was less attractive than untreated Chinese cabbage to ovipositing DBM, while JA-treatment of common cabbage (B. oleracea) made plants more attractive than untreated controls for oviposition by this insect. Similar effects were observed when plants of the two species were damaged by DBM larvae. In the absence of insect-feeding, or JA application, Chinese cabbage is much more attractive to DBM than common cabbage. Inducible resistance therefore appears to occur in a more susceptible plant and induced susceptibility appears to occur in a more resistant plant, suggesting a possible balance mechanism between constitutive and inducible defences to a specialist herbivore.
Resumo:
During oviposition, the parasitoid wasp Cotesia congregata injects polydnavirus, venom, and parasitoid eggs into larvae of its lepidopteran host.. the tobacco hornworm, Manduca sexta. Polydnaviruses (PDVs) suppress the immune system of the host and allow the juvenile parasitoids to develop without being encapsulated by host hemocytes mobilized by the immune system. Previous work identified a gene in the Cotesia rubecula PDV (CrV1) that is responsible for depolymerization of actin in hemocytes of the host Pieris rapae during a narrow temporal window from 4 to 8 h post-parasitization. Its expression appears temporally correlated with hemocyte dysfunction. After this time, the hemocytes recover, and encapsulation is then inhibited by other mechanism(s). In contrast, in parasitized tobacco hornworm larvae this type of inactivation in hemocytes of parasitized M. sexta larvae leads to irreversible cellular disruption. We have characterized the temporal pattern of expression of the CrV1-homolog from the C. congregata PDV in host fat body and hemocytes using Northern blots, and localized the protein in host hemocytes with polyclonal antibodies to CrV1 protein produced in P. rapae in response to expression of the CrV1 protein. Host hemocytes stained with FITC-labeled phalloidin, which binds to filamentous actin, were used to observe hemocyte disruption in parasitized and virus-injected hosts and a comparison was made to hemocytes of nonparasitized control larvae. At 24 h post-parasitization host hemocytes were significantly altered compared to those of nonparasitized larvae. Hemocytes front newly parasitized hosts displayed blebbing, inhibition of spreading and adhesion, and overall cell disruption. A CrV1-homolog gene product was localized in host hemocytes using polyclonal CrV1 antibodies, suggesting that CrV1-like gene products of C. congregata's bracovirus are responsible for the impaired immune response of the host. (C) 2005 Elsevier Ltd. All rights reserved.