175 resultados para Spin density matrix

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the magnetoresistance oscillation phenomena in the Bechgaard salts (TMTSF)(2)X, where X = ClO4, PF6, and AsF6 in pulsed magnetic fields to 51 T. Of particular importance is the observation of a new magnetoresistance oscillation for X = ClO4 in its quenched state. In the absence of any Fermi-surface reconstruction due to anion order at low temperatures, all three materials exhibit nonmonotonic temperature dependence of the oscillation amplitude in the spin-density-wave (SDW) state. We discuss a model where, below a characteristic temperature T* within the SDW state, a magnetic breakdown gap opens. [S0163-1829(99)00904-2].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a new version of the density-matrix renormalization group we determine the phase diagram of a model of an antiferromagnetic Heisenberg spin chain where the spins interact with quantum phonons. A quantum phase transition from a gapless spin-fluid state to a gapped dimerized phase occurs at a nonzero value of the spin-phonon coupling. The transition is in the same universality class as that of a frustrated spin chain, to which the model maps in the diabatic limit. We argue that realistic modeling of known spin-Peierls materials should include the effects of quantum phonons.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The concept of entanglement in systems where the particles are indistinguishable has been the subject of much recent interest and controversy. In this paper we study the notion of entanglement of particles introduced by Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] in several specific physical systems, including some that occur in condensed-matter physics. The entanglement of particles is relevant when the identical particles are itinerant and so not distinguished by their position as in spin models. We show that entanglement of particles can behave differently than other approaches that have been used previously, such as entanglement of modes (occupation-number entanglement) and the entanglement in the two-spin reduced density matrix. We argue that the entanglement of particles is what could actually be measured in most experimental scenarios and thus its physical significance is clear. This suggests that entanglement of particles may be useful in connecting theoretical and experimental studies of entanglement in condensed-matter systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tetrazolo[1,5-a] quinazoline (9) is converted to 2-azidoquinazoline (10) on sublimation at 200 degrees C and above, and the azide-tetrazole equilibrium is governed by entropy. 2-Quinazolylnitrenes 11 and 27 and/ or their ring expansion products 14 and 29 can undergo type I (ylidic) and type II (diradicaloid) ring opening. Argon matrix photolysis of 9/10 affords 2-quinazolylnitrene (11), which has been characterized by ESR, UV, and IR spectroscopy. A minor amount of a second nitrene, formed by rearrangement or ring opening, is also observed. A diradical (19) is formed rapidly by type II ring opening and characterized by ESR spectroscopy; it decays thermally at 15 K with a half-life of ca. 47 min, in agreement with its calculated facile intersystem crossing (19T -> 19OSS) followed by facile cyclization/rearrangement to 1-cyanoindazole (21) (calculated activation barrier 1- 2 kcal/mol) and N-cyanoanthranilonitrile (22). 21 and 22 are the isolated end products of photolysis. 21 is also the end product of flash vacuum thermolysis. An excellent linear correlation between the zero-field splitting parameter D (cm(-1)) and the spin density F on the nitrene N calculated at the B3LYP/EPRIII level is reported (R-2 = 0.993 for over 100 nitrenes). Matrix photolysis of 3-phenyltetrazolo[1,5-a] quinazoline (25) affords the benzotriazacycloheptatetraene 29, which can be photochemically interconverted with the type I ring opening product 2-isocyano-alpha-diazo-alpha- phenyltoluene (33) as determined by IR and UV spectroscopy. The corresponding carbene 37, obtained by photolysis of 33, was detected by matrix ESR spectroscopy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study a generalized Hubbard model on the two-leg ladder at zero temperature, focusing on a parameter region with staggered flux (SF)/d-density wave (DDW) order. To guide our numerical calculations, we first investigate the location of a SF/DDW phase in the phase diagram of the half-filled weakly interacting ladder using a perturbative renormalization group (RG) and bosonization approach. For hole doping 6 away from half-filling, finite-system density-matrix renormalizationgroup (DMRG) calculations are used to study ladders with up to 200 rungs for intermediate-strength interactions. In the doped SF/DDW phase, the staggered rung current and the rung electron density both show periodic spatial oscillations, with characteristic wavelengths 2/delta and 1/delta, respectively, corresponding to ordering wavevectors 2k(F) and 4k(F) for the currents and densities, where 2k(F) = pi(1 - delta). The density minima are located at the anti-phase domain walls of the staggered current. For sufficiently large dopings, SF/DDW order is suppressed. The rung density modulation also exists in neighboring phases where currents decay exponentially. We show that most of the DMRG results can be qualitatively understood from weak-coupling RG/bosonization arguments. However, while these arguments seem to suggest a crossover from non-decaying correlations to power-law decay at a length scale of order 1/delta, the DMRG results are consistent with a true long-range order scenario for the currents and densities. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

What entanglement is present in naturally occurring physical systems at thermal equilibrium? Most such systems are intractable and it is desirable to study simple but realistic systems that can be solved. An example of such a system is the one-dimensional infinite-lattice anisotropic XY model. This model is exactly solvable using the Jordan-Wigner transform, and it is possible to calculate the two-site reduced density matrix for all pairs of sites. Using the two-site density matrix, the entanglement of formation between any two sites is calculated for all parameter values and temperatures. We also study the entanglement in the transverse Ising model, a special case of the XY model, which exhibits a quantum phase transition. It is found that the next-nearest-neighbor entanglement (though not the nearest-neighbor entanglement) is a maximum at the critical point. Furthermore, we show that the critical point in the transverse Ising model corresponds to a transition in the behavior of the entanglement between a single site and the remainder of the lattice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using spontaneous parametric down-conversion, we produce polarization-entangled states of two photons and characterize them using two-photon tomography to measure the density matrix. A controllable decoherence is imposed on the states by passing the photons through thick, adjustable birefringent elements. When the system is subject to collective decoherence, one particular entangled state is seen to be decoherence-free, as predicted by theory. Such decoherence-free systems may have an important role for the future of quantum computation and information processing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The one-dimensional Holstein model of spinless fermions interacting with dispersionless phonons is studied using a new variant of the density matrix renormalization group. By examining various low-energy excitations of finite chains, the metal-insulator phase boundary is determined precisely and agrees with the predictions of strong coupling theory in the antiadiabatic regime and is consistent with renormalization group arguments in the adiabatic regime. The Luttinger liquid parameters, determined by finite-size scaling, are consistent with a Kosterlitz-Thouless transition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The integral of the Wigner function over a subregion of the phase space of a quantum system may be less than zero or greater than one. It is shown that for systems with 1 degree of freedom, the problem of determining the best possible upper and lower bounds on such an integral, over an possible states, reduces to the problem of finding the greatest and least eigenvalues of a Hermitian operator corresponding to the subregion. The problem is solved exactly in the case of an arbitrary elliptical region. These bounds provide checks on experimentally measured quasiprobability distributions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A remarkable feature of quantum entanglement is that an entangled state of two parties, Alice (A) and Bob (B), may be more disordered locally than globally. That is, S(A) > S(A, B), where S() is the von Neumann entropy. It is known that satisfaction of this inequality implies that a state is nonseparable. In this paper we prove the stronger result that for separable states the vector of eigenvalues of the density matrix of system AB is majorized by the vector of eigenvalues of the density matrix of system A alone. This gives a strong sense in which a separable state is more disordered globally than locally and a new necessary condition for separability of bipartite states in arbitrary dimensions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We obtain the finite-temperature unconditional master equation of the density matrix for two coupled quantum dots (CQD's) when one dot is subjected to a measurement of its electron occupation number using a point contact (PC). To determine how the CQD system state depends on the actual current through the PC device, we use the so-called quantum trajectory method to derive the zero-temperature conditional master equation. We first treat the electron tunneling through the PC barrier as a classical stochastic point process (a quantum-jump model). Then we show explicitly that our results can be extended to the quantum-diffusive limit when the average electron tunneling rate is very large compared to the extra change of the tunneling rate due to the presence of the electron in the dot closer to the PC. We find that in both quantum-jump and quantum-diffusive cases, the conditional dynamics of the CQD system can be described by the stochastic Schrodinger equations for its conditioned state vector if and only if the information carried away from the CQD system by the PC reservoirs can be recovered by the perfect detection of the measurements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We describe in detail the theory underpinning the measurement of density matrices of a pair of quantum two-level systems (qubits). Our particular emphasis is on qubits realized by the two polarization degrees of freedom of a pair of entangled photons generated in a down-conversion experiment; however, the discussion applies in general, regardless of the actual physical realization. Two techniques are discussed, namely, a tomographic reconstruction (in which the density matrix is linearly related to a set of measured quantities) and a maximum likelihood technique which requires numerical optimization (but has the advantage of producing density matrices that are always non-negative definite). In addition, a detailed error analysis is presented, allowing errors in quantities derived from the density matrix, such as the entropy or entanglement of formation, to be estimated. Examples based on down-conversion experiments are used to illustrate our results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently quantum tomography has been proposed as a fundamental tool for prototyping a few qubit quantum device. It allows the complete reconstruction of the state produced from a given input into the device. From this reconstructed density matrix, relevant quantum information quantities such as the degree of entanglement and entropy can be calculated. Generally, orthogonal measurements have been discussed for this tomographic reconstruction. In this paper, we extend the tomographic reconstruction technique to two new regimes. First, we show how nonorthogonal measurements allow the reconstruction of the state of the system provided the measurements span the Hilbert space. We then detail how quantum-state tomography can be performed for multiqudits with a specific example illustrating how to achieve this in one- and two-qutrit systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The role of the collective antisymmetric state in entanglement creation by spontaneous emission in a system of two non-overlapping two-level atoms has been investigated. Populations of the collective atomic states and the Wootters entanglement measure (concurrence) for two sets of initial atomic conditions are calculated and illustrated graphically. Calculations include the dipole-dipole interaction and a spatial separation between the atoms that the antisymmetric state of the system is included throughout even for small interatomic separations. It is shown that spontaneous emission can lead to a transient entanglement between the atoms even if the atoms were prepared initially in an unentangled state. It is found that the ability of spontaneous emission to create transient entanglement relies on the absence of population in the collective symmetric state of the system. For the initial state of only one atom excited, entanglement builds up rapidly in time and reaches a maximum for parameter values corresponding roughly to zero population in the symmetric state. On the other hand, for the initial condition of both atoms excited, the atoms remain unentangled until the symmetric state is depopulated. A simple physical interpretation of these results is given in terms of the diagonal states of the density matrix of the system. We also study entanglement creation in a system of two non-identical atoms of different transition frequencies. It is found that the entanglement between the atoms can be enhanced compared to that for identical atoms, and can decay with two different time scales resulting from the coherent transfer of the population from the symmetric to the antisymmetric state. In addition, it was found that a decaying initial entanglement between the atoms can display a revival behaviour.