2 resultados para Spermacoce capitata
em University of Queensland eSpace - Australia
Resumo:
For purposes of interstate and international fruit trade, it is necessary to demonstrate that in areas in which fruit fly species have not previously established permanent populations, but which are subject to introductions of fruit flies from outside the area, the introduced population once detected, has not become established. In this paper, we apply methodology suggested mainly by Carey (1991, 1995) to introductions of Mediterranean fruit fly (Medfly), Ceratitis capitata Weid., and Queensland fruit fly (QFF) Bactrocera tryoni Froggatt (Diptera: Tephritidae) to South Australia, a state in which these species do not occur naturally and in which introductions, once detected, are actively treated. By analysing historical data associated with fruit fly outbreaks in South Australia, we demonstrate that: (i) fruit flies occur seasonally, as would occur in established populations, except there is no evidence of the critical spring generation of either species; (ii) there is no evidence of increasing frequency of outbreaks, trapped flies or larval occurrences over 29 years; (iii) there is no evidence of decreasing time between catches of adult flies as the years progress; (iv) there is no decrease in the mean number of years between outbreaks in the same locations; (v) there is no statistically significant recurrence of outbreaks in the same locations in successive years; (vi) there is no evidence of spread of outbreaks outwards from a central location; (vii) the likelihood of outbreaks in a city or town is related to the size of the human population; (viii) introduction pathways by road from Western Australia (for Medfly) and eastern Australia (for QFF) are shown to exist and to illegally or accidentally carry considerable amounts of fruit into South Australia; and (ix) there was no association between the numbers of either Queensland fruit fly or Medfly and the spatial pattern of either loquat or cumquat trees as sources of larval food in spring. This analysis supports the hypothesis that most fruit fly outbreaks in South Australia have been the result of separate introductions of infested fruit by vehicular traffic and that most of the resultant fly outbreaks were detected and died out within a few weeks of the application of eradication procedures. An alternative hypothesis, that populations of fruit flies are established in South Australia at below detectable levels, is impossible to disprove with conventional technology, but the likelihood of it being true is minimised by our analysis. Both hypotheses could be tested soon with newly developed genetic techniques.
Resumo:
Biological control is the purposeful introduction of parasites, predators, and pathogens to reduce or suppress pest populations. Wolbachia are inherited bacteria of arthropods that have recently attracted attention for their potential as new biocontrol agents. Wolbachia manipulate host reproduction by using several strategies, one of which is cytoplasmic incompatibility (CI) [Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. (1999) Annu. Rev. Microbiol. 53,71-102]. We established Wolbachia-infected lines of the medfly Ceratitis capitata using the infected cherry fruit fly Rhagoletis cerasi as donor. Wolbachia induced complete CI in the novel host. Laboratory cage populations were completely suppressed by single releases of infected males, suggesting that Wolbachia-induced CI could be used as a novel environmentally friendly tool for the control of medfly populations. The results also encourage the introduction of Wolbachia into pest and vector species of economic and hygenic relevance to suppress or modify natural populations.