3 resultados para Spectroscopy Fourier transform infrared

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultem 1000 polyetherimide films prepared by cast-evaporating technique were covered with a 1H,1H,2H-tridecafluoro-oct-1-ene (PFO) plasma-polymerized layer. The effects of the plasma exposure time on the surface composition were studied by X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and surface energy analysis. The surface topography of the plasma layer was deduced from scanning electron microscopy. The F/C ratio for plasma-polymerized PFO under the input RF power of 50 W can be as high as 1.30 for 480 s and similar to 0.4-2 at % of oxygen was detected, resulting from the reaction of long-lived radicals in the plasma polymer with atmospheric oxygen. The plasma deposition of fluorocarbon coating from plasma PFO reduces the surface energy from 46 to 18.3 mJ m(-2). (c) 2006 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iodine-doped (I-doped) mesoporous titania with a bicrystalline (anatase and rutile) framework was synthesized by a two-step template hydrothermal synthesis route. I-doped titania with anatase structure was also synthesized without the use of a block copolymer as a template. The resultant titania samples were characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared, nitrogen adsorption, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-visible absorption spectroscopy. Both I-doped titania samples, with and without template, show much better photocatalytic activity than commercial P25 titania in the photodegradation of methylene blue under the irradiation of visible light (> 420 nm) and UV-visible light. Furthermore, I-doped mesoporous titania with a bicrystalline framework exhibits better activity than I-doped titania with anatase structure. The effect of rutile phase in titania on the adsorptive capacity of water and surface hydroxyl, and photocatalytic activity was investigated in detail. The excellent performance of I-doped mesoporous titania under both visible light and UV-visible light can be attributed to the combined effects of bicrystalline framework, high crystallinity, large surface area, mesoporous structure, and high visible light absorption induced by I-doping.