9 resultados para Spectral Sensitivity

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The potential for trichromacy in mammals, thought to be unique to primates, was recently discovered in two Australian marsupials. Whether the presence of three cone types, sensitive to short- (SWS), medium-(MWS) and long-(LWS) wavelengths, occurs across all marsupials remains unknown. Here, we have investigated the presence, distribution and spectral sensitivity of cone types in two further species, the quokka (Setonix brachyurus) and quenda (Isoodon obesulus). Immunohistochemistry revealed that SWS cones in the quokka are concentrated in dorso-temporal retina, while in the quenda, two peaks were identified in naso-ventral and dorso-temporal retina. In both species, MWS/LWS cone spatial distributions matched those of retinal ganglion cells. Microspectrophotometry (MSP) confirmed that MWS and LWS cones are spectrally distinct, with mean wavelengths of maximum absorbance at 502 and 538 nm in the quokka, and at 509 and 551 nm, in the quenda. Although small SWS cone outer segments precluded MSP measurements, molecular analysis identified substitutions at key sites, accounting for a spectral shift from ultraviolet in the quenda to violet in the quokka. The presence of three cone types, along with previous findings in the fat-tailed dunnart and honey possum, suggests that three spectrally distinct cone types are a feature spanning the marsupials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microspectrophotometric examination of the retina of a procellariiform marine bird, the wedge-tailed shearwater Puffinus pacificus, revealed the presence of five different types of vitamin A(1)-based visual pigment in seven different types of photoreceptor. A single class of rod contained a medium-wavelength sensitive visual pigment with a wavelength of maximum absorbance (lambda(max)) at 502 nm. Four different types of single cone contained visual pigments maximally sensitive in either the violet (VS, lambda(max) 406 nm), short (SWS, lambda(max) 450 nm), medium (MWS, lambda(max) 503 nm) or long (LWS, lambda(max) 566 nm) spectral ranges. In the peripheral retina, the SWS, MWS and LWS single cones contained pigmented oil droplets in their inner segments with cut-off wavelengths (lambda(cut)) at 445 (C-type), 506 (Y-type) and 562 nm (R-type), respectively. The VS visual pigment was paired with a transparent (T-type) oil droplet that displayed no significant absorption above at least 370 run. Both the principal and accessory members of the double cone pair contained the same 566 nm lambda(max) visual pigment as the LWS single cones but only the principal member contained an oil droplet, which had a lambda(cut) at 413 nm. The retina had a horizontal band or 'visual streak' of increased photoreceptor density running across the retina approximately 1.5 mm dorsal to the top of the pecten. Cones in the centre of the horizontal streak were smaller and had oil droplets that were either transparent/colourless or much less pigmented than at the periphery. It is proposed that the reduction in cone oil droplet pigmentation in retinal areas associated with high visual acuity is an adaptation to compensate for the reduced photon capture ability of the narrower photoreceptors found there. Measurements of the spectral transmittance of the ocular media reveal that wavelengths down to at least 300 nm would be transmitted to the retina.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Birds have four spectrally distinct types of single cones that they use for colour vision. It is often desirable to be able to model the spectral sensitivities of the different cone types, which vary considerably between species. However, although there are several mathematical models available for describing the spectral absorption of visual pigments, there is no model describing the spectral absorption of the coloured oil droplets found in three of the four single cone types. In this paper, we describe such a model and illustrate its use in estimating the spectral sensitivities of single cones. Furthermore, we show that the spectral locations of the wavelengths of maximum absorbance (lambda(max)) of the short- (SWS), medium- (MWS) and long- (LWS) wavelength-sensitive visual pigments and the cut-off wavelengths (lambda(cut)) of their respective C-, Y- and R-type oil droplets can be predicted from the lambda(max) of the ultraviolet- (UVS)/violet- ( VS) sensitive visual pigment.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gonodactyloid stomatopod crustaceans possess polarization vision, which enables them to discriminate light of different e-vector angle. Their unusual apposition compound eyes are divided by an equatorial band of six rows of enlarged, structurally modified ommatidia, the mid-band (MB). The rhabdoms of the two most ventral MB rows 5 and 6 are structurally designed for polarization vision. Here we show, with electrophysiological recordings, that the photoreceptors R1-R7 within these two MB rows in Gonodactylus chiragra are highly sensitive to linear polarized light of two orthogonal directions (PS=6.1). They possess a narrow spectral sensitivity peaking at 565 nm. Unexpectedly, photoreceptors within the distal rhabdomal tier of MB row 2 also possess highly sensitive linear polarization receptors, which are in their spectral and polarization characteristics similar to the receptors of MB rows 5 and 6. Photoreceptors R1-R7 within the remainder of the MB exhibit low polarization sensitivity (PS=2.3). Outside the MB, in the two hemispheres, R1-R7 possess medium linear polarization sensitivity (PS=3.8) and a broad spectral sensitivity peaking at around 500 nm, typical for most crustaceans. Throughout the retina the most distally situated UV-sensitive R8 cells are not sensitive to linear polarized light.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Poison frogs in the anuran family Dendrobatidae use bright colors on their bodies to advertise toxicity. The species Dendrobates pumilio Schmidt 1858, the strawberry poison frog, shows extreme polymorphism in color and pattern in Panama. It is known that females of D. pumilio preferentially choose mates of their own color morph. Nevertheless, potential predators must clearly see and recognize all color morphs if the aposermatic signaling system is to function effectively. We examined the ability of conspecifics and a model predator to discriminate a diverse selection of D. pumilio colors from each other and from background colors. Microspectrophotometry of isolated rod and cone photoreceptors of D. pumilio revealed the presence of a trichromatic photopic visual system. A typical tetrachromatic bird system was used for the model predator. Reflectance spectra of frog and background colors were obtained, and discrimination among spectra in natural illuminants was mathematically modeled. The results revealed that both D. pumilio and the model predator discriminate most colors quite well, both from each other and from typical backgrounds, with the predator generally performing somewhat better than the conspecifics. Each color morph displayed at least one color signal that is highly visible against backgrounds to both visual systems. Our results indicate that the colors displayed by the various color morphs of D. pumilio are effective signals both to conspecifics and to a model predator.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Primates have X chromosome genes for cone photopigments with sensitivity maxima from 535 to 562 nm. Old World monkeys and apes (catarrhines) and the New World ( platyrrhine) genus Alouatta have separate genes for 535-nm ( medium wavelength; M) and 562-nm ( long wavelength; L) pigments. These pigments, together with a 425-nm ( short wavelength) pigment, permit trichromatic color vision. Other platyrrhines and prosimians have a single X chromosome gene but often with alleles for two or three M/L photopigments. Consequently, heterozygote females are trichromats, but males and homozygote females are dichromats. The criteria that affect the evolution of M/L alleles and maintain genetic polymorphism remain a puzzle, but selection for finding food may be important. We compare different types of color vision for detecting more than 100 plant species consumed by tamarins ( Saguinus spp.) in Peru. There is evidence that both frequency-dependent selection on homozygotes and heterozygote advantage favor M/L polymorphism and that trichromatic color vision is most advantageous in dim light. Also, whereas the 562-nm allele is present in all species, the occurrence of 535- to 556-nm alleles varies between species. This variation probably arises because trichromatic color vision favors widely separated pigments and equal frequencies of 535/543- and 562-nm alleles, whereas in dichromats, long-wavelength pigment alleles are fitter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many coral reef fish possess ultraviolet (UV) colour patterns. The behavioural significance of these patterns is poorly understood and experiments on this issue have not been reported for free-living reef fish in their natural environment. The damselfish Pomacentrus amboinensis has UV facial patterns, and spectroradiometric ocular media measurements show that it has the potential for UV vision. To test the potential behavioural significance of the UV patterns, I studied the response of males, in natural territories on the reef and in aquaria, to two conspecific intruders, one presented in a UV-transmitting (UV+) container and the other in a UV-absorbing (UV-) one. Territory owners attacked intruders viewed through UV+ filters significantly more often and for longer than intruders viewed through the UV- filter. In general, the results of the field experiment confirmed those of the laboratory experiment. The results support the hypothesis that P. amboinensis males are sensitive to UV light and that reflectance patterns, which appear in high contrast only in UV, modulate the level of aggressive behaviour. A recent survey showed that many predatory fish may not have UV vision and the use of UV colours in select species of reef fish may therefore serve as a 'private communication channel'. (C) 2004 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The apposition compound eyes of gonodactyloid stomatopods are divided into a ventral and a dorsal hemisphere by six equatorial rows of enlarged ommatidia, the mid-band (MB). Whereas the hemispheres are specialized for spatial vision, the MB consists of four dorsal rows of ommatidia specialized for colour vision and two ventral rows specialized for polarization vision. The eight retinula cell axons (RCAs) from each ommatidium project retinotopically onto one corresponding lamina cartridge, so that the three retinal data streams (spatial, colour and polarization) remain anatomically separated. This study investigates whether the retinal specializations are reflected in differences in the RCA arrangement within the corresponding lamina cartridges. We have found that, in all three eye regions, the seven short visual fibres (svfs) formed by retinula cells 1-7 (R1-R7) terminate at two distinct lamina levels, geometrically separating the terminals of photoreceptors sensitive to either orthogonal e-vector directions or different wavelengths of light. This arrangement is required for the establishment of spectral and polarization opponency mechanisms. The long visual fibres (lvfs) of the eighth retinula cells (R8) pass through the lamina and project retinotopically to the distal medulla externa. Differences between the three eye regions exist in the packing of svf terminals and in the branching patterns of the lvfs within the lamina. We hypothesize that the R8 cells of MB rows 1-4 are incorporated into the colour vision system formed by R1-R7, whereas the R8 cells of MB rows 5 and 6 form a separate neural channel from R1 to R7 for polarization processing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Colour changes in fiddler crabs have long been noted, but a functional interpretation is still lacking. Here we report that neighbouring populations of Uca vomeris in Australia exhibit different degrees of carapace colours, which range from dull mottled to brilliant blue and white. We determined the spectral characteristics of the mud substratum and of the carapace colours of U. vomeris and found that the mottled colours of crabs are cryptic against this background, while display colours provide strong colour contrast for both birds and crabs, but luminance contrast only for a crab visual system. We tested whether crab populations may become cryptic under the influence of bird predation by counting birds overflying or feeding on differently coloured colonies. Colonies with cryptically coloured crabs indeed experience a much higher level of bird presence, compared to colourful colonies. We show in addition that colourful crab individuals subjected to dummy bird predation do change their body colouration over a matter of days. The crabs thus appear to modify their social signalling system depending on their assessment of predation risk.