217 resultados para Spectral Graph Theory
em University of Queensland eSpace - Australia
Resumo:
Electronic communications devices intended for government or military applications must be rigorously evaluated to ensure that they maintain data confidentiality. High-grade information security evaluations require a detailed analysis of the device's design, to determine how it achieves necessary security functions. In practice, such evaluations are labour-intensive and costly, so there is a strong incentive to find ways to make the process more efficient. In this paper we show how well-known concepts from graph theory can be applied to a device's design to optimise information security evaluations. In particular, we use end-to-end graph traversals to eliminate components that do not need to be evaluated at all, and minimal cutsets to identify the smallest group of components that needs to be evaluated in depth.
Resumo:
This paper proposes three models of adding relations to an organization structure which is a complete K-ary tree of height H: (i) a model of adding an edge between two nodes with the same depth N, (ii) a model of adding edges between every pair of nodes with the same depth N and (iii) a model of adding edges between every pair of siblings with the same depth N. For each of the three models, an optimal depth N* is obtained by maximizing the total shortening path length which is the sum of shortening lengths of shortest paths between every pair of all nodes. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Quasi-birth-and-death (QBD) processes with infinite “phase spaces” can exhibit unusual and interesting behavior. One of the simplest examples of such a process is the two-node tandem Jackson network, with the “phase” giving the state of the first queue and the “level” giving the state of the second queue. In this paper, we undertake an extensive analysis of the properties of this QBD. In particular, we investigate the spectral properties of Neuts’s R-matrix and show that the decay rate of the stationary distribution of the “level” process is not always equal to the convergence norm of R. In fact, we show that we can obtain any decay rate from a certain range by controlling only the transition structure at level zero, which is independent of R. We also consider the sequence of tandem queues that is constructed by restricting the waiting room of the first queue to some finite capacity, and then allowing this capacity to increase to infinity. We show that the decay rates for the finite truncations converge to a value, which is not necessarily the decay rate in the infinite waiting room case. Finally, we show that the probability that the process hits level n before level 0 given that it starts in level 1 decays at a rate which is not necessarily the same as the decay rate for the stationary distribution.
Resumo:
The integral of the Wigner function of a quantum-mechanical system over a region or its boundary in the classical phase plane, is called a quasiprobability integral. Unlike a true probability integral, its value may lie outside the interval [0, 1]. It is characterized by a corresponding selfadjoint operator, to be called a region or contour operator as appropriate, which is determined by the characteristic function of that region or contour. The spectral problem is studied for commuting families of region and contour operators associated with concentric discs and circles of given radius a. Their respective eigenvalues are determined as functions of a, in terms of the Gauss-Laguerre polynomials. These polynomials provide a basis of vectors in a Hilbert space carrying the positive discrete series representation of the algebra su(1, 1) approximate to so(2, 1). The explicit relation between the spectra of operators associated with discs and circles with proportional radii, is given in terms of the discrete variable Meixner polynomials.
Resumo:
A k-star is the graph K-1,K-k. We prove a general theorem about k-star factorizations of Cayley graphs. This is used to give necessary and sufficient conditions for the existence of k-star factorizations of any power (K-q)(S) of a complete graph with prime power order q, products C-r1 x C-r2 x ... x C-rk of k cycles of arbitrary lengths, and any power (C-r)(S) of a cycle of arbitrary length. (C) 2001 John Wiley & Sons, Inc.
Resumo:
A new method is presented to determine an accurate eigendecomposition of difficult low temperature unimolecular master equation problems. Based on a generalisation of the Nesbet method, the new method is capable of achieving complete spectral resolution of the master equation matrix with relative accuracy in the eigenvectors. The method is applied to a test case of the decomposition of ethane at 300 K from a microcanonical initial population with energy transfer modelled by both Ergodic Collision Theory and the exponential-down model. The fact that quadruple precision (16-byte) arithmetic is required irrespective of the eigensolution method used is demonstrated. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
With the exception of the sodium D-lines, recent calculations of line broadening cross sections for several multiplets of sodium by Leininger et al (Leininger T, Gadea F X and Dickinson A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 1805) are in substantial disagreement with cross sections interpolated from the tables of Anstee and O'Mara (Anstee and O'Mara 1995 Mon. Not. R. Astron. Soc. 276 859) and Barklem and O'Mara (Barklem P S and O'Mara B J 1997 Mon. Not. R. Astron. Soc. 290 102). The discrepancy is as large as a factor of 3 for the 3p-4d multiplet. The two theories are tested by using the results of each to synthesize lines in the solar spectrum. It is found that generally the data from the theory of Anstee, Barklem and O'Mara produce the best match to the observed solar spectrum. It is found, using a simple model for reflection of the optical electron by the potential barrier between the two atoms, that the reflection coefficient is too large for avoided crossings with the upper states of subordinate lines to contribute to line broadening, supporting the neglect of avoided ionic crossings by Anstee, Barklem and O'Mara for these lines. The large discrepancies between the two sets of calculations is a result of an approximate treatment of avoided ionic crossings for these lines by Leininger et al (Leininger T, Gadea F X and Dickinson A 2000 J. Phys. B: At. Mol. Opt. Phys. 33 1805).
Resumo:
In this paper, we show that K-10n can be factored into alpha C-5-factors and beta 1-factors for all non-negative integers alpha and beta satisfying 2alpha + beta = 10(n) - 1.
Resumo:
The diagrammatic strong-coupling perturbation theory (SCPT) for correlated electron systems is developed for intersite Coulomb interaction and for a nonorthogonal basis set. The construction is based on iterations of exact closed equations for many - electron Green functions (GFs) for Hubbard operators in terms of functional derivatives with respect to external sources. The graphs, which do not contain the contributions from the fluctuations of the local population numbers of the ion states, play a special role: a one-to-one correspondence is found between the subset of such graphs for the many - electron GFs and the complete set of Feynman graphs of weak-coupling perturbation theory (WCPT) for single-electron GFs. This fact is used for formulation of the approximation of renormalized Fermions (ARF) in which the many-electron quasi-particles behave analogously to normal Fermions. Then, by analyzing: (a) Sham's equation, which connects the self-energy and the exchange- correlation potential in density functional theory (DFT); and (b) the Galitskii and Migdal expressions for the total energy, written within WCPT and within ARF SCPT, a way we suggest a method to improve the description of the systems with correlated electrons within the local density approximation (LDA) to DFT. The formulation, in terms of renormalized Fermions LIDA (RF LDA), is obtained by introducing the spectral weights of the many electron GFs into the definitions of the charge density, the overlap matrices, effective mixing and hopping matrix elements, into existing electronic structure codes, whereas the weights themselves have to be found from an additional set of equations. Compared with LDA+U and self-interaction correction (SIC) methods, RF LDA has the advantage of taking into account the transfer of spectral weights, and, when formulated in terms of GFs, also allows for consideration of excitations and nonzero temperature. Going beyond the ARF SCPT, as well as RF LIDA, and taking into account the fluctuations of ion population numbers would require writing completely new codes for ab initio calculations. The application of RF LDA for ab initio band structure calculations for rare earth metals is presented in part 11 of this study (this issue). (c) 2005 Wiley Periodicals, Inc.