12 resultados para Spatio-temporal dynamics
em University of Queensland eSpace - Australia
Resumo:
The purpose of this study was to examine the spatio-temporal activation of the sternocleidomastoid (SCM) and cervical extensor (CE) muscles with respect to the deltoid muscle onset during rapid voluntary upper limb movement in healthy volunteers. The repeatability and reliability of the spatio-temporal aspects of the myoelectric signals were also examined. Ten subjects performed bilateral and unilateral rapid upper limb flexion, abduction and extension in response to a visual stimulus. EMG onsets and normalised root mean square (nRMS) values were calculated for the SCM and CE muscles. Subjects attended three testing sessions over non-consecutive days allowing the repeatability and reliability of these measures to be assessed. The SCM and CE muscles demonstrated feed-forward activation (activation within 50 ms of deltoid onset) during rapid arm movements in all directions. The sequence and magnitude of neck muscle activation displayed directional specificity, however, the neck flexor and extensor muscles displayed co-activation during all perturbations. EMG onsets demonstrated high repeatability in terms of repeated measure precision (nSEM in the range 1.9-5.7%). This was less evident for the repeatability of nRMS values. The results of this study provide a greater understanding of cervical neuromotor control strategies. During bilateral and unilateral upper limb perturbations, the SCM and CE muscles demonstrate feed-forward co-activation. It seems apparent that feed-forward activation of neck muscles is a mechanism necessary to achieve stability for the visual and vestibular systems, whilst ensuring stabilisation and protection of the cervical spine. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The Accelerating Moment Release (AMR) preceding earthquakes with magnitude above 5 in Australia that occurred during the last 20 years was analyzed to test the Critical Point Hypothesis. Twelve earthquakes in the catalog were chosen based on a criterion for the number of nearby events. Results show that seven sequences with numerous events recorded leading up to the main earthquake exhibited accelerating moment release. Two occurred near in time and space to other earthquakes preceded by AM R. The remaining three sequences had very few events in the catalog so the lack of AMR detected in the analysis may be related to catalog incompleteness. Spatio-temporal scanning of AMR parameters shows that 80% of the areas in which AMR occurred experienced large events. In areas of similar background seismicity with no large events, 10 out of 12 cases exhibit no AMR, and two others are false alarms where AMR was observed but no large event followed. The relationship between AMR and Load-Unload Response Ratio (LURR) was studied. Both methods predict similar critical region sizes, however, the critical point time using AMR is slightly earlier than the time of the critical point LURR anomaly.
Resumo:
A longitudinal capture-mark-recapture study was conducted to determine the temporal dynamics of rabbit haemorrhagic disease (RHD) in a European rabbit (Oryctolagus cuniculus) population of low to moderate density on sand-hill country in the lower North Island of New Zealand. A combination of sampling ( trapping and radio-tracking) and diagnostic (cELISA, PCR and isotype ELISA) methods was employed to obtain data weekly from May 1998 until June 2001. Although rabbit haemorrhagic disease virus ( RHDV) infection was detected in the study population in all 3 years, disease epidemics were evident only in the late summer or autumn months in 1999 and 2001. Overall, 20% of 385 samples obtained from adult animals older than 11 weeks were seropositive. An RHD outbreak in 1999 contributed to an estimated population decline of 26%. A second RHD epidemic in February 2001 was associated with a population decline of 52% over the subsequent month. Following the outbreaks, the seroprevalence in adult survivors was between 40% and 50%. During 2000, no deaths from RHDV were confirmed and mortalities were predominantly attributed to predation. Influx of seronegative immigrants was greatest in the 1999 and 2001 breeding seasons, and preceded the RHD epidemics in those years. Our data suggest that RHD epidemics require the population immunity level to fall below a threshold where propagation of infection can be maintained through the population.
Resumo:
1. We analysed time-series data from populations of red kangaroos (Macropus rufus, Desmarest) inhabiting four areas in the pastoral zone of South Australia. We formulated a set of a priori models to disentangle the relative effects of the covariates: rainfall, harvesting, intraspecific competition, and domestic herbivores, on kangaroo population-growth rate. 2. The statistical framework allowed for spatial variation in the growth-rate parameters, response to covariates, and environmental variability, as well as spatially correlated error terms due to shared environment. 3. The most parsimonious model included all covariates but no area-specific parameter values, suggesting that kangaroo densities respond in the same way to the covariates across the areas. 4. The temporal dynamics were spatially correlated, even after taking into account the potentially synchronizing effect of rainfall, harvesting and domestic herbivores. 5. Counter-intuitively, we found a positive rather than negative effect of domestic herbivore density on the population-growth rate of kangaroos. We hypothesize that this effect is caused by sheep and cattle acting as a surrogate for resource availability beyond rainfall. 6. Even though our system is well studied, we must conclude that approximating resources by surrogates such as rainfall is more difficult than previously thought. This is an important message for studies of consumer-resource systems and highlights the need to be explicit about population processes when analysing population patterns.
Resumo:
Spatio-temporal maps of the occipital cortex of macaque monkeys were analyzed using optical imaging of intrinsic signals. The images obtained during localized visual stimulation (IS) were compared with the images obtained on presentation of a blank screen (IB). We first investigated spontaneous variations of the intrinsic signals by analyzing the 100 IBs for each of the three cortical areas. Slow periodical activation was observed in alternation over the cortical areas. Cross-correlation analysis indicated that synchronization of spontaneous activation only took place within each cortical area, but not between them. When a small, drifting grating (2degreesX2degrees) was presented on the fovea. a dark spot appeared in the optical image at the cortical representation of this retinal location. It spread bilaterally along the border between V1 and V2, continuing as a number of parallel dark bands covering a large area of the lateral surface of V1. Cross-correlation analysis showed that during visual stimulation the intrinsic signals over all of the three cortical areas were synchronized, with in-phase activation of V1 and V2 and anti-phase activation of V4 and V1/V2. The significance of these extensive synergistic and antagonistic interactions between different cortical areas is discussed. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Basic structure studies of the biosynthetic machinery of the cell by electron microscopy (EM) have underpinned much of our fundamental knowledge in the areas of molecular cell biology and membrane traffic. Driven by our collective desire to understand how changes in the complex and dynamic structure of this enigmatic organelle relate to its pivotal roles in the cell, the comparatively high-resolution glimpses of the Golgi and other compartments of the secretory pathway offered to us through EM have helped to inspire the development and application of some of our most informative, complimentary (molecular, biochemical and genetic) approaches. Even so, no one has yet even come close to relating the basic molecular mechanisms of transport, through and from the Golgi, to its ultrastructure, to everybody's satisfaction. Over the past decade, EM tomography has afforded new insights into structure -function relationships of the Golgi and provoked a re-evaluation of older paradigms. By providing a set of tools for structurally dissecting cells at high-resolution in three-dimensions (3D), EM tomography has emerged as a method for studying molecular cell biology in situ. As we move rapidly toward the establishment of molecular atlases of organelles through advances in proteomics and genomics, tomographic studies of the Golgi offer the tantalizing possibility that one day, we will be able to map the spatio-temporal coordinates of Golgi-related proteins and lipids accurately in the context of 4D cellular space. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Pre-settlement events play an important role in determining larval success in marine invertebrates with bentho-pelagic life histories, yet the consequences of these events typically are not well understood. The purpose of this study was to examine the pre-settlement impacts of different seawater temperatures on the size and population density of dinoflagellate symbionts in brooded larvae of the Caribbean coral Porites astreoides. Larvae were collected from P. astreoides at 14-20 m depth on Conch Reef (Florida) in June 2002, and incubated for 24 h at 15 temperatures spanning the range 25.1 degrees-30.0 degrees C in mean increments of 0.4 +/- 0.1 degrees C (+/- SD). The most striking feature of the larval responses was the magnitude of change in both parameters across this 5 degrees C temperature range within 24 h. In general, larvae were largest and had the highest population densities of Symbiodinium sp. between 26.4 degrees-27.7 degrees C, and were smallest and had the lowest population densities at 25.8 degrees C and 28.8 degrees C. Larval size and symbiont population density were elevated slightly (relative to the minimal values) at the temperature extremes of 25.1 degrees C and 30 degrees C. These data demonstrate that coral larvae are highly sensitive to seawater temperature during their pelagic phase, and respond through changes in size and the population densities of Symbiodinium sp. to ecologically relevant temperature signals within 24 h. The extent to which these changes are biologically meaningful will depend on the duration and frequency of exposure of coral larvae to spatio-temporal variability in seawater temperature, and whether the responses have cascading effects on larval success and their entry to the post-settlement and recruitment phase.
Resumo:
Evolutionary change results from selection acting on genetic variation. For migration to be successful, many different aspects of an animal's physiology and behaviour need to function in a co-coordinated way. Changes in one migratory trait are therefore likely to be accompanied by changes in other migratory and life-history traits. At present, we have some knowledge of the pressures that operate at the various stages of migration, but we know very little about the extent of genetic variation in various aspects of the migratory syndrome. As a consequence, our ability to predict which species is capable of what kind of evolutionary change, and at which rate, is limited. Here, we review how our evolutionary understanding of migration may benefit from taking a quantitative-genetic approach and present a framework for studying the causes of phenotypic variation. We review past research, that has mainly studied single migratory traits in captive birds, and discuss how this work could be extended to study genetic variation in the wild and to account for genetic correlations and correlated selection. In the future, reaction-norm approaches may become very important, as they allow the study of genetic and environmental effects on phenotypic expression within a single framework, as well as of their interactions. We advocate making more use of repeated measurements on single individuals to study the causes of among-individual variation in the wild, as they are easier to obtain than data on relatives and can provide valuable information for identifying and selecting traits. This approach will be particularly informative if it involves systematic testing of individuals under different environmental conditions. We propose extending this research agenda by using optimality models to predict levels of variation and covariation among traits and constraints. This may help us to select traits in which we might expect genetic variation, and to identify the most informative environmental axes. We also recommend an expansion of the passerine model, as this model does not apply to birds, like geese, where cultural transmission of spatio-temporal information is an important determinant of migration patterns and their variation.
Resumo:
Recently Hupe and Rubin (2003, Vision Research 43 531 - 548) re-introduced the plaid as a form of perceptual rivalry by using two sets of drifting gratings behind a circular aperture to produce quasi-regular perceptual alternations between a coherent moving plaid of diamond-shaped intersections and the two sets of component 'sliding' gratings. We call this phenomenon plaid motion rivalry (PMR), and have compared its temporal dynamics with those of binocular rivalry in a sample of subjects covering a wide range of perceptual alternation rates. In support of the proposal that all rivalries may be mediated by a common switching mechanism, we found a high correlation between alternation rates induced by PMR and binocular rivalry. In keeping with a link discovered between the phase of rivalry and mood, we also found a link between PMR and an individual's mood state that is consistent with suggestions that each opposing phase of rivalry is associated with one or the other hemisphere, with the 'diamonds' phase of PMR linked with the 'positive' left hemisphere.
Resumo:
The occurrence of rockbursts was quite common during active mining periods in the Champion reef mines of Kolar gold fields, India. Among the major rockbursts, the ‘area-rockbursts’ were unique both in regard to their spatio-temporal distribution and the extent of damage caused to the mine workings. A detailed study of the spatial clustering of 3 major area-rockbursts (ARB) was carried out using a multi-fractal technique involving generalized correlation integral functions. The spatial distribution analysis of all 3 area-rockbursts showed that they are heterogeneous. The degree of heterogeneity (D2 – D∞) in the cases of ARB-I, II and III were found to be 0.52, 0.37 and 0.41 respectively. These differences in fractal structure indicate that the ARBs of the present study were fully controlled by different heterogeneous stress fields associated with different mining and geological conditions. The present study clearly showed the advantages of the application of multi-fractals to seismic data and to characterise, analyse and examine the area-rockbursts and their causative factors in the Kolar gold mines.