10 resultados para Spatial Prediction Maps
em University of Queensland eSpace - Australia
Resumo:
Most of the modem developments with classification trees are aimed at improving their predictive capacity. This article considers a curiously neglected aspect of classification trees, namely the reliability of predictions that come from a given classification tree. In the sense that a node of a tree represents a point in the predictor space in the limit, the aim of this article is the development of localized assessment of the reliability of prediction rules. A classification tree may be used either to provide a probability forecast, where for each node the membership probabilities for each class constitutes the prediction, or a true classification where each new observation is predictively assigned to a unique class. Correspondingly, two types of reliability measure will be derived-namely, prediction reliability and classification reliability. We use bootstrapping methods as the main tool to construct these measures. We also provide a suite of graphical displays by which they may be easily appreciated. In addition to providing some estimate of the reliability of specific forecasts of each type, these measures can also be used to guide future data collection to improve the effectiveness of the tree model. The motivating example we give has a binary response, namely the presence or absence of a species of Eucalypt, Eucalyptus cloeziana, at a given sampling location in response to a suite of environmental covariates, (although the methods are not restricted to binary response data).
Resumo:
Traditional vegetation mapping methods use high cost, labour-intensive aerial photography interpretation. This approach can be subjective and is limited by factors such as the extent of remnant vegetation, and the differing scale and quality of aerial photography over time. An alternative approach is proposed which integrates a data model, a statistical model and an ecological model using sophisticated Geographic Information Systems (GIS) techniques and rule-based systems to support fine-scale vegetation community modelling. This approach is based on a more realistic representation of vegetation patterns with transitional gradients from one vegetation community to another. Arbitrary, though often unrealistic, sharp boundaries can be imposed on the model by the application of statistical methods. This GIS-integrated multivariate approach is applied to the problem of vegetation mapping in the complex vegetation communities of the Innisfail Lowlands in the Wet Tropics bioregion of Northeastern Australia. The paper presents the full cycle of this vegetation modelling approach including sampling sites, variable selection, model selection, model implementation, internal model assessment, model prediction assessments, models integration of discrete vegetation community models to generate a composite pre-clearing vegetation map, independent data set model validation and model prediction's scale assessments. An accurate pre-clearing vegetation map of the Innisfail Lowlands was generated (0.83r(2)) through GIS integration of 28 separate statistical models. This modelling approach has good potential for wider application, including provision of. vital information for conservation planning and management; a scientific basis for rehabilitation of disturbed and cleared areas; a viable method for the production of adequate vegetation maps for conservation and forestry planning of poorly-studied areas. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates how demographic (socioeconomic) and land-use (physical and environmental) data can be integrated within a decision support framework to formulate and evaluate land-use planning scenarios. A case-study approach is undertaken with land-use planning scenarios for a rapidly growing coastal area in Australia, the Shire of Hervey Bay. The town and surrounding area require careful planning of the future urban growth between competing land uses. Three potential urban growth scenarios are put forth to address this issue. Scenario A ('continued growth') is based on existing socioeconomic trends. Scenario B ('maximising rates base') is derived using optimisation modelling of land-valuation data. Scenario C ('sustainable development') is derived using a number of social, economic, and environmental factors and assigning weightings of importance to each factor using a multiple criteria analysis approach. The land-use planning scenarios are presented through the use of maps and tables within a geographical information system, which delineate future possible land-use allocations up until 2021. The planning scenarios are evaluated by using a goal-achievement matrix approach. The matrix is constructed with a number of criteria derived from key policy objectives outlined in the regional growth management framework and town planning schemes. The authors of this paper examine the final efficiency scores calculated for each of the three planning scenarios and discuss the advantages and disadvantages of the three land-use modelling approaches used to formulate the final scenarios.
Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic DEM based porous media
Resumo:
DEM modelling of the motion of coarse fractions of the charge inside SAG mills has now been well established for more than a decade. In these models the effect of slurry has broadly been ignored due to its complexity. Smoothed particle hydrodynamics (SPH) provides a particle based method for modelling complex free surface fluid flows and is well suited to modelling fluid flow in mills. Previous modelling has demonstrated the powerful ability of SPH to capture dynamic fluid flow effects such as lifters crashing into slurry pools, fluid draining from lifters, flow through grates and pulp lifter discharge. However, all these examples were limited by the ability to model only the slurry in the mill without the charge. In this paper, we represent the charge as a dynamic porous media through which the SPH fluid is then able to flow. The porous media properties (specifically the spatial distribution of porosity and velocity) are predicted by time averaging the mill charge predicted using a large scale DEM model. This allows prediction of transient and steady state slurry distributions in the mill and allows its variation with operating parameters, slurry viscosity and slurry volume, to be explored. (C) 2006 Published by Elsevier Ltd.
Resumo:
The spatial heterogeneity in the risk of Ross River virus (family Togaviridae, genus Alphavirus, RRV) disease, the most common mosquito-borne disease in Australia, was examined in Redland Shire in southern Queensland, Australia. Disease cases, complaints from residents of intense mosquito biting exposure, and human population data were mapped using a geographic information system. Surface maps of RRV disease age-sex standardized morbidity ratios and mosquito biting complaint morbidity ratios were created. To determine whether there was significant spatial variation in disease and complaint patterns, a spatial scan analysis method was used to test whether the number of cases and complaints was distributed according to underlying population at risk. Several noncontiguous areas in proximity to productive saline water habitats of Aedes vigilax (Skuse), a recognized vector of RRV, had higher than expected numbers of RRV disease cases and complaints. Disease rates in human populations in areas which had high numbers of adult Ae. vigilax in carbon dioxide- and octenol-baited light traps were up to 2.9 times those in areas that rarely had high numbers of mosquitoes. It was estimated that targeted control of adult Ae. vigilax in these high-risk areas could potentially reduce the RRV disease incidence by an average of 13.6%. Spatial correlation was found between RRV disease risk and complaints from residents of mosquito biting. Based on historical patterns of RRV transmission throughout Redland Shire and estimated future human population growth in areas with higher than average RRV disease incidence, it was estimated that RRV incidence rates will increase by 8% between 2001 and 2021. The use of arbitrary administrative areas that ranged in size from 4.6 to 318.3 km2, has the potential to mask any small scale heterogeneity in disease patterns. With the availability of georeferenced data sets and high-resolution imagery, it is becoming more feasible to undertake spatial analyses at relatively small scales.
Resumo:
Spatial data has now been used extensively in the Web environment, providing online customized maps and supporting map-based applications. The full potential of Web-based spatial applications, however, has yet to be achieved due to performance issues related to the large sizes and high complexity of spatial data. In this paper, we introduce a multiresolution approach to spatial data management and query processing such that the database server can choose spatial data at the right resolution level for different Web applications. One highly desirable property of the proposed approach is that the server-side processing cost and network traffic can be reduced when the level of resolution required by applications are low. Another advantage is that our approach pushes complex multiresolution structures and algorithms into the spatial database engine. That is, the developer of spatial Web applications needs not to be concerned with such complexity. This paper explains the basic idea, technical feasibility and applications of multiresolution spatial databases.
Resumo:
Government agencies responsible for riparian environments are assessing the combined utility of field survey and remote sensing for mapping and monitoring indicators of riparian zone condition. The objective of this work was to compare the Tropical Rapid Appraisal of Riparian Condition (TRARC) method to a satellite image based approach. TRARC was developed for rapid assessment of the environmental condition of savanna riparian zones. The comparison assessed mapping accuracy, representativeness of TRARC assessment, cost-effectiveness, and suitability for multi-temporal analysis. Two multi-spectral QuickBird images captured in 2004 and 2005 and coincident field data covering sections of the Daly River in the Northern Territory, Australia were used in this work. Both field and image data were processed to map riparian health indicators (RHIs) including percentage canopy cover, organic litter, canopy continuity, stream bank stability, and extent of tree clearing. Spectral vegetation indices, image segmentation and supervised classification were used to produce RHI maps. QuickBird image data were used to examine if the spatial distribution of TRARC transects provided a representative sample of ground based RHI measurements. Results showed that TRARC transects were required to cover at least 3% of the study area to obtain a representative sample. The mapping accuracy and costs of the image based approach were compared to those of the ground based TRARC approach. Results proved that TRARC was more cost-effective at smaller scales (1-100km), while image based assessment becomes more feasible at regional scales (100-1000km). Finally, the ability to use both the image and field based approaches for multi-temporal analysis of RHIs was assessed. Change detection analysis demonstrated that image data can provide detailed information on gradual change, while the TRARC method was only able to identify more gross scale changes. In conclusion, results from both methods were considered to complement each other if used at appropriate spatial scales.