15 resultados para Southern oscillation

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our group have recently proposed that low prenatal vitamin D may be a risk-modifying factor for schizophrenia. Climate variability impacts on vitamin D levels in a population via fluctuations in the amount of available UV radiation. In order to explore this hypothesis, we examined fluctuations in the birthrates for people with schizophrenia born between 1920 and 1967 and three sets of variables strongly associated with UV radiation. These included: (a) the Southern Oscillation Index (SOI), a marker of El Nino which is the most prominent meteorological factor that influences Queensland weather: (b) measures of cloud cover and (c) measures of sunshine. Schizophrenia births were extracted from the Queensland Mental Health register and corrected for background population birth rates. Schizophrenia birth rates had several apparently non-random features in common with the SO1. The prominent SO1 fluctuation event that occurred between 1937 and 1943 is congruent with the most prominent fluctuation in schizophrenia birth rates. The relatively flat profile of SOI activity between 1927 and 1936 also corresponds to the flattest period in the schizophrenia time series. Both time series have prominent oscillations in the 3 ~, year range between 1946 and 1960. Significant associations between schizophrenia birth rates and measures of both sunshine and cloud cover were identified,and all three time series shared periodicity in the 3-4 year range. The analyses suggest that the risk of schizophrenia is higher for those born during times of increased cloud cover,reduced sunshine and positive SO1. These ecological analyses provide initial support for the vitamin D hypothesis, however alternative non-genetic candidate exposures also need to be considered. Other sites with year-to-year fluctuations in cloud cover and sunshine should examine patterns of association between these climate variables and schizophrenia birth rates. The Stanley Foundation supported this project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of long-term forecasts of pest pressure is central to better pest management. We relate the Southern Oscillation Index (SOI) and the Sea Surface Temperature (SST) to long-term light-trap catches of the two key moth pests of Australian agriculture, Helicoverpa punctigera (Wallengren) and H. armigera (Hubner), at Narrabri, New South Wales over 11 years, and for H. punctigera only at Turretfield, South Australia over 22 years. At Narrabri, the size of the first spring generation of both species was significantly correlated with the SOI in certain months, sometimes up to 15 months before the date of trapping. Differences in the SOI and SST between significant months were used to build composite variables in multiple regressions which gave fitted values of the trap catches to less than 25% of the observed values. The regressions suggested that useful forecasts of both species could be made 6-15 months ahead. The influence of the two weather variables on trap catches of H. punctigera at Turretfield were not as strong as at Narrabri, probably because the SOI was not as strongly related to rainfall in southern Australia as it is in eastern Australia. The best fits were again given by multiple regressions with SOI plus SST variables, to within 40% of the observed values. The reliability of both variables as predictors of moth numbers may be limited by the lack of stability in the SOI-rainfall correlation over the historical record. As no other data set is available to test the regressions, they can only be tested by future use. The use of long-term forecasts in pest management is discussed, and preliminary analyses of other long sets of insect numbers suggest that the Southern Oscillation Index may be a useful predictor of insect numbers in other parts of the world.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The El Nino/Southern Oscillation (ENSO) phenomenon is believed to have operated continuously over the last glacial interglacial cycle(1). ENSO variability has been suggested to be linked to millennial-scale oscillations in North Atlantic climate during that time(2,3), but the proposals disagree on whether increased frequency of El Nino events, the warm phase of ENSO, was linked to North Atlantic warm or cold periods. Here we present a high-resolution record of surface moisture, based on the degree of peat humification and the ratio of sedges to grass, from northern Queensland, Australia, covering the past 45,000 yr. We observe millennial-scale dry periods, indicating periods of frequent El Nino events ( summer precipitation declines in El Nino years in northeastern Australia). We find that these dry periods are correlated to the Dansgaard - Oeschger events - millennial-scale warm events in the North Atlantic climate record - although no direct atmospheric connection from the North Atlantic to our site can be invoked. Additionally, we find climatic cycles at a semiprecessional timescale (, 11,900 yr). We suggest that climate variations in the tropical Pacific Ocean on millennial as well as orbital timescales, which determined precipitation in northeastern Australia, also exerted an influence on North Atlantic climate through atmospheric and oceanic teleconnections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various authors have suggested a general predictive value of climatic indices of El Nino/Southem Oscillation events as indicators of outbreaks of arbovirus disease, particularly Ross River virus in Australia. By analyzing over 100 years of historical outbreak data on Ross River virus disease, our data indicate that, although high Southern Oscillation Index and La Nina conditions are potentially important predictors for the Murray Darling River region, this is not the case for the other four ecological zones in Australia. Our study, therefore, cautions against overgeneralization and suggests that, since climate and weather exert different influences and have different biological implications for the multiplicity of vectors involved, it is logical that predictors should be heterogeneous.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The specific identity of endosymbiotic dinoflagellates (Symbiodinium spp.) from most zooxanthellate corals is unknown. In a survey of symbiotic cnidarians from the southern Great Barrier Reef (GBR), 23 symbiont types were identified from 86 host species representing 40 genera. A majority (>85%) of these symbionts belong to a single phylogenetic clade or subgenus (C) composed of closely related (as assessed by sequence data from the internal transcribed spacer region and the ribosomal large subunit gene), yet ecologically and physiologically distinct, types. A few prevalent symbiont types, or generalists, dominate the coral community of the southern GBR, whereas many rare and/or specific symbionts, or specialists, are found uniquely within certain host taxa. The comparison of symbiont diversity between southern GBR and Caribbean reefs shows an inverse relationship between coral diversity and symbiont diversity, perhaps as a consequence of more-rapid diversification of Caribbean symbionts. Among clade C types, generalists C1 and C3 are common to both Caribbean and southern GBR symbiont assemblages, whereas the rest are regionally endemic. Possibly because of environmental changes in the Caribbean after geographic isolation through the Quaternary period, a high proportion of Caribbean fauna associate with symbiont taxa from two other distantly related Symbiodinium clades (A and B) that rarely occur in Pacific hosts. The resilience of Porites spp. and the resistance of Montipora digitata to thermal stress and bleaching are partially explained by their association with a thermally tolerant symbiont type, whereas the indiscriminant widespread bleaching and death among certain Pacific corals, during El Nino Southern Oscillation events, are influenced by associations with symbionts possessing higher sensitivity to thermal stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent El Nino events have stimulated interest in the development of modeling techniques to forecast extremes of climate and related health events. Previous studies have documented associations between specific climate variables (particularly temperature and rainfall) and outbreaks of arboviral disease. In some countries, such diseases are sensitive to Fl Nino. Here we describe a climate-based model for the prediction of Ross River virus epidemics in Australia. From a literature search and data on case notifications, we determined in which years there were epidemics of Ross River virus in southern Australia between 1928 and 1998. Predictor variables were monthly Southern Oscillation index values for the year of an epidemic or lagged by 1 year. We found that in southeastern states, epidemic years were well predicted by monthly Southern Oscillation index values in January and September in the previous year. The model forecasts that there is a high probability of epidemic Ross River virus in the southern states of Australia in 1999. We conclude that epidemics of arboviral disease can, at least in principle, be predicted on the basis of climate relationships.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To reconstruct oceanographic variations in the subtropical South Pacific, 271-year long subseasonal time series of Sr/Ca and delta(18)O were generated from a coral growing at Rarotonga (21.5degreesS, 159.5degreesW). In this case, coral Sr/Ca appears to be an excellent proxy for sea surface temperature (SST) and coral delta(18)O is a function of both SST and seawater delta(18)O composition (delta(18)O(sw)). Here, we focus on extracting the delta(18)O(sw) signal from these proxy records. A method is presented assuming that coral Sr/Ca is solely a function of SST and that coral delta(18)O is a function of both SST and delta(18)O(sw). This method separates the effects of delta(18)O(sw) from SST by breaking the instantaneous changes of coral delta(18)O into separate contributions by instantaneous SST and delta(18)O(sw) changes, respectively. The results show that on average delta(18)O(sw) at Rarotonga explains similar to39% of the variance in delta(18)O and that variations in SST explains the remaining similar to61% of delta(18)O variance. Reconstructed delta(18)O(sw) shows systematic increases in summer months (December-February) consistent with the regional pattern of variations in precipitation and evaporation. The delta(18)O(sw) also shows a positive linear correlation with satellite-derived estimated salinity for the period 1980 to 1997 (r = 0.72). This linear correlation between reconstructed delta(18)O(sw) and salinity makes it possible to use the reconstructed delta(18)O(sw) to estimate the past interannual and decadal salinity changes in this region. Comparisons of coral delta(18)O and delta(18)O(sw) at Rarotonga with the Pacific decadal oscillation index suggest that the decadal and interdecadal salinity and SST variability at Rarotonga appears to be related to basin-scale decadal variability in the Pacific. Copyright (C) 2002 Elsevier Science Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Ice-volume forced glacial-interglacial cyclicity is the major cause of global climate variation within the late Quaternary period. Within the Australian region, this variation is expressed predominantly as oscillations in moisture availability. Glacial periods were substantially drier than today with restricted distribution of mesic plant communities, shallow or ephemeral water bodies and extensive aeolian dune activity. 2. Superimposed on this cyclicity in Australia is a trend towards drier and/or more variable climates within the last 350 000 years. This trend may have been initiated by changes in atmospheric and ocean circulation resulting from Australia's continued movement into the Southeast Asian region and involving the onset or intensification of the El Nino-Southern Oscillation system and a reduction in summer monsoon activity. 3. Increased biomass burning, stemming originally from increased climatic variability and later enhanced by activities of indigenous people, resulted in a more open and sclerophyllous vegetation, increased salinity and a further reduction in water availability. 4. Past records combined with recent observations suggest that the degree of environmental variability will increase and the drying trend will be enhanced in the foreseeable future, regardless of the extent or nature of human intervention.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Four pollen and charcoal records derived from marine cores around the northern perimeter of Australia are examined to provide a regional picture of patterns, causes and impacts of climate change over the last 100-300 ka. The availability of radiocarbon dates and oxygen isotope records for the cores provides primary chronological control. Spectral analysis of components of these records demonstrates an overall importance of Milankovitch frequencies with clear glacial-interglacial cyclicity dominated by variation in precipitation. In addition, a number of pollen taxa, as well as charcoal particles, exhibit a 30 ka frequency that is considered, from its relationship with biomass burning and with results of past modelling, to reflect changes in the intensity of El Nino-Southern Oscillation (ENSO) variability. Pollen components of all records show a decline, frequently stepwise, in more fire-sensitive vegetation and its replacement with more fire-tolerant vegetation. There is some evidence that this trend is linked to an onset or general increase in ENSO activity and perhaps also to variation in monsoon activity dating from about 300 ka BP that was caused by changes to oceanic circulation within the Indonesian region. The trend may have accelerated within the last 45 ka due to burning by indigenous people. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over 1000 marine and terrestrial pollen diagrams and Some hundreds of vertebrate faunal sequences have been studied in the Austral-Asian region bisected by the PEPII transect, from the Russian arctic extending south through east Asia, Indochina, southern Asia, insular Southeast Asia (Sunda), Melanesia, Australasia (Sahul) and the western south Pacific. The majority of these records are Holocene but sufficient data exist to allow the reconstruction of the changing biomes over at least the past 200,000 years. The PEPII transect is free of the effects of large northern ice caps yet exhibits vegetational change in glacial cycles of a similar scale to North America. Major processes that can be discerned are the response of tropical forests in both lowlands and uplands to glacial cycles, the expansion of humid vegetation at the Pleistocene-Holocene transition and the change in faunal and vegetational controls as humans occupy the region. There is evidence for major changes in the intensity of monsoon and El Nino-Southern oscillation variability both on glacial-interglacial and longer time scales with much of the region experiencing a long-term trend towards more variable and/or drier climatic conditions. Temperature variation is most marked in high latitudes and high altitudes with precipitation providing the major climate control in lower latitude, lowland areas. At least some boundary shifts may be the response of vegetation to changing CO2 levels in the atmosphere. Numerous questions of detail remain, however, and current resolution is too coarse to examine the degree of synchroneity of millennial scale change along the transect. (C) 2003 Elsevier Ltd and INQUA. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The value of a seasonal forecasting system based on phases of the Southern Oscillation was estimated for a representative dryland wheat grower in the vicinity of Goondiwindi. In particular the effects on this estimate of risk attitude and planting conditions were examined. A recursive stochastic programming approach was used to identify the grower's utility-maximising action set in the event of each of the climate patterns over the period 1894-1991 recurring In the imminent season. The approach was repeated with and without use of the forecasts. The choices examined were, at planting, nitrogen application rate and cultivar and, later in the season, choices of proceeding with or abandoning each wheat activity, The value of the forecasting system was estimated as the maximum amount the grower could afford to pay for its use without expected utility being lowered relative to its non use.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using peanuts as an example, a generic methodology is presented to forward-estimate regional crop production and associated climatic risks based on phases of the Southern Oscillation Index (SOI). Yield fluctuations caused by a highly variable rainfall environment are of concern to peanut processing and marketing bodies. The industry could profitably use forecasts of likely production to adjust their operations strategically. Significant, physically based lag-relationships exist between an index of ocean/atmosphere El Nino/Southern Oscillation phenomenon and future rainfall in Australia and elsewhere. Combining knowledge of SOI phases in November and December with output from a dynamic simulation model allows the derivation of yield probability distributions based on historic rainfall data. This information is available shortly after planting a crop and at least 3-5 months prior to harvest. The study shows that in years when the November-December SOI phase is positive there is an 80% chance of exceeding average district yields. Conversely, in years when the November-December SOI phase is either negative or rapidly falling there is only a 5% chance of exceeding average district yields, but a 95% chance of below average yields. This information allows the industry to adjust strategically for the expected volume of production. The study shows that simulation models can enhance SOI signals contained in rainfall distributions by discriminating between useful and damaging rainfall events. The methodology can be applied to other industries and regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Agricultural ecosystems and their associated business and government systems are diverse and varied. They range from farms, to input supply businesses, to marketing and government policy systems, among others. These systems are dynamic and responsive to fluctuations in climate. Skill in climate prediction offers considerable opportunities to managers via its potential to realise system improvements (i.e. increased food production and profit and/or reduced risks). Realising these opportunities, however, is not straightforward as the forecasting skill is imperfect and approaches to applying the existing skill to management issues have not been developed and tested extensively. While there has been much written about impacts of climate variability, there has been relatively little done in relation to applying knowledge of climate predictions to modify actions ahead of likely impacts. However, a considerable body of effort in various parts of the world is now being focused on this issue of applying climate predictions to improve agricultural systems. In this paper, we outline the basis for climate prediction, with emphasis on the El Nino-Southern Oscillation phenomenon, and catalogue experiences at field, national and global scales in applying climate predictions to agriculture. These diverse experiences are synthesised to derive general lessons about approaches to applying climate prediction in agriculture. The case studies have been selected to represent a diversity of agricultural systems and scales of operation. They also represent the on-going activities of some of the key research and development groups in this field around the world. The case studies include applications at field/farm scale to dryland cropping systems in Australia, Zimbabwe, and Argentina. This spectrum covers resource-rich and resource-poor farming with motivations ranging from profit to food security. At national and global scale we consider possible applications of climate prediction in commodity forecasting (wheat in Australia) and examine implications on global wheat trade and price associated with global consequences of climate prediction. In cataloguing these experiences we note some general lessons. Foremost is the value of an interdisciplinary systems approach in connecting disciplinary Knowledge in a manner most suited to decision-makers. This approach often includes scenario analysis based oil simulation with credible models as a key aspect of the learning process. Interaction among researchers, analysts and decision-makers is vital in the development of effective applications all of the players learn. Issues associated with balance between information demand and supply as well as appreciation of awareness limitations of decision-makers, analysts, and scientists are highlighted. It is argued that understanding and communicating decision risks is one of the keys to successful applications of climate prediction. We consider that advances of the future will be made by better connecting agricultural scientists and practitioners with the science of climate prediction. Professions involved in decision making must take a proactive role in the development of climate forecasts if the design and use of climate predictions are to reach their full potential. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spatial and temporal variability in wheat production in Australia is dominated by rainfall occurrence. The length of historical production records is inadequate, however, to analyse spatial and temporal patterns conclusively. In this study we used modelling and simulation to identify key spatial patterns in Australian wheat yield, identify groups of years in the historical record in which spatial patterns were similar, and examine association of those wheat yield year groups with indicators of the El Nino Southern Oscillation (ENSO). A simple stress index model was trained on 19 years of Australian Bureau of Statistics shire yield data (1975-93). The model was then used to simulate shire yield from 1901 to 1999 for all wheat-producing shires. Principal components analysis was used to determine the dominating spatial relationships in wheat yield among shires. Six major components of spatial variability were found. Five of these represented near spatially independent zones across the Australian wheatbelt that demonstrated coherent temporal (annual) variability in wheat yield. A second orthogonal component was required to explain the temporal variation in New South Wales. The principal component scores were used to identify high- and low-yielding years in each zone. Year type groupings identified in this way were tested for association with indicators of ENSO. Significant associations were found for all zones in the Australian wheatbelt. Associations were as strong or stronger when ENSO indicators preceding the wheat season (April-May phases of the Southern Oscillation Index) were used rather than indicators based on classification during the wheat season. Although this association suggests an obvious role for seasonal climate forecasting in national wheat crop forecasting, the discriminatory power of the ENSO indicators, although significant, was not strong. By examining the historical years forming the wheat yield analog sets within each zone, it may be possible to identify novel climate system or ocean-atmosphere features that may be causal and, hence, most useful in improving seasonal forecasting schemes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coral bleaching events have become more frequent and widespread, largely due to elevated sea surface temperatures. Global climate change could lead to increased variability of sea surface temperatures, through influences on climate systems, e.g. El Nino Southern Oscillation (ENSO). Field observations in 1999, following a strong ENSO, revealed that corals bleached in winter after unusually cold weather. To explore the basis for these observations, the photosynthetic responses of the coral species Montipora digitata Studer were investigated in a series of temperature and light experiments. Small replicate coral colonies were exposed to ecologically relevant lower temperatures for varying durations and under light regimes that ranged from darkness to full sunlight. Photosynthetic efficiency was analyzed using a pulse amplitude modulated (PAM) fluorometer (F-0, F-m, F-v/F-m), and chlorophyll a (chl a) content and symbiotic dinoflagellate density were analyzed with spectrophotometry and microscopy, respectively. Cold temperature stress had a negative impact on M digitata colonies indicated by decreased photosynthetic efficiency (F-v/F-m), loss of symbiotic dinoflagellates and changes in photosynthetic pigment concentrations. Corals in higher light regimes were more susceptible to cold temperature stress, Moderate cold stress resulted in photoacclimatory responses, but severe cold stress resulted in photodamage, bleaching and increased mortality. Responses to cold temperature stress of M digitata appeared similar to that observed in corals exposed to warmer than normal temperatures, suggesting a common mechanism. The results of this study suggest that corals and coral reefs may also be impacted by exposure to cold as well as warm temperature extremes as climate change occurs.