94 resultados para Sorghum -- Biotechnology
em University of Queensland eSpace - Australia
Resumo:
Seventy sorghum inbred lines which formed part of the Queensland Department of Primary Industries (QDPI) sorghum breeding program were screened with 104 previously mapped RFLP markers. The lines were related by pedigree and consisted of ancestral source lines, intermediate lines and recent releases from the program. We compared the effect of defining marker alleles using either identity by state (IBS) or identity by descent (IBD) on our capacity to trace markers through the pedigree and detect evidence of selection for particular alleles. Allelic identities defined using IBD were much more sensitive for detecting non-Mendelian segregation in this pedigree. Only one marker allele showed significant evidence of selection when IBS was used compared with ten regions with particular allelic identities when IBD was used. Regions under selection were compared with the location of QTLs for agronomic traits known to be under selection in the breeding program. Only two of the ten regions were associated with known QTLs that matched with knowledge of the agronomic characteristics of the ancestral lines. Some of the other regions were hypothesised to be associated with genes for particular traits based on the properties of the ancestral source lines.
Resumo:
Two important factors influencing sugar yield, the primary focus of sugarcane plant breeding programs, are stalk number and suckering. Molecular markers linked to both of these traits are sought to assist in the identification of high sugar yield, high stalk number, low-suckering sugarcane clones. In this preliminary mapping study, 108 progeny from a biparental cross involving two elite Australian sugarcane clones were evaluated at two sites for two years for both stalk number and suckering. A total of 258 DNA markers, including both restriction fragment length polymorphisms (RFLPs) and radio-labelled amplified fragments (RAFs), were scored and evaluated using single-factor analysis. Sixteen (7 RFLPs and 9 RAFs) and 14 (6 RFLPs and 8 RAFs) markers were identified that were significantly associated (P < 0.01) with stalk number and suckering, respectively, across both years and sites. The seven and six RFLP markers associated with stalk number and suckering, respectively, were generated by eight different RFLP probes, of which seven had been mapped in sorghum and (or) sugarcane. Of significant interest was the observation that all seven RFLP probes could be shown to be located within or near QTLs associated with tillering and rhizomatousness in sorghum. This observation highlights the usefulness of comparative mapping between sorghum and sugarcane and suggests that the identification of useful markers for stalk number and suckering in sugarcane would be facilitated by focussing on sorghum QTLs associated with related traits.
Resumo:
Fifty-four different sugarcane resistance gene analogue (RGA) sequences were isolated, characterized, and used to identify molecular markers linked to major disease-resistance loci in sugarcane. Ten RGAs were identified from a sugarcane stem expressed sequence tag (EST) library; the remaining 44 were isolated from sugarcane stem, leaf, and root tissue using primers designed to conserved RGA motifs. The map location of 31 of the RGAs was determined in sugarcane and compared with the location of quantitative trait loci (QTL) for brown rust resistance. After 2 years of phenotyping, 3 RGAs were shown to generate markers that were significantly associated with resistance to this disease. To assist in the understanding of the complex genetic structure of sugarcane, 17 of the 31 RGAs were also mapped in sorghum. Comparative mapping between sugarcane and sorghum revealed syntenic localization of several RGA clusters. The 3 brown rust associated RGAs were shown to map to the same linkage group (LG) in sorghum with 2 mapping to one region and the third to a region previously shown to contain a major rust-resistance QTL in sorghum. These results illustrate the value of using RGAs for the identification of markers linked to disease resistance loci and the value of simultaneous mapping in sugarcane and sorghum.
Resumo:
his paper contains a warning for investors, executives, analysts and scientists about the sustainability of the biotechnology industry. The study upon which the paper is based examines the impact of market forces on the biotechnology industry and argues that the short-term focus of market driven policies and practices impacts on the sustainability of firms operating in the industry. The market is represented by the National Association of Securities Dealers, Automated Quotations Market (NASDAQ), considered to be one of the vehicles of the promotion of ''new economy'' companies and principles. Through the application of bibliometric data (using both refereed and non-refereed papers), matched with the long term tracking of the NASDAQ Biotechnology Index, the authors provide a clear indication that the short-term investment thinking is leading an industry that is characterised by long R&D cycles. There is an incompatibility between the shorter-term investment considerations and the long-term scientific developments the biotechnology industry is attempting to achieve. Graphs and illustrations are provided to portray the comparative data.
Resumo:
The generic pharmaceutical value chain model has been employed to describe both the global pharmaceutical and biotechnology industries till now. This research investigates the organisational value chain in Australian biotechnology companies in order to assess the appropriateness of the pharmaceutical value chain to small-and medium-sized biotechnology companies. The main theme of the research is: Can a generic model of the organisational value chain be defined for the biotechnology industry? Emanating from the literature, two research propositions were developed. RP1: there are eight major definable elements/activities of the organisational value chain for the biotechnology industry. RP2: Coverage of the elements in the biotechnology value chain ranges from focused to broad. A multiple case study methodology was used to explore these propositions. To develop a number of case studies, data was collected from senior managers of small and medium Australian biotechnology companies using an interview instrument, as well as from publicly available documentation and through observation. The results were analysed using cross-case comparisons. The results showed that an aggregation of the value chains of each organisation can be reduced to these eight definable elements that constitute the biotechnology value chain: basic research, applied research, development, verification and validation, prototype development, clinical trials, manufacturing and marketing. However, the findings also indicate that these major elements of the value chain need to be further reduced into sub-activities or sub-tasks to cater for the unique differences between biotechnology companies. Generally, the findings were consistent with the literature. However, a wider sampling, including international biotechnology organisations should be studied. The major contribution of this research is in the development of a value chain model, including general sub-tasks, for the Australian biotechnology industry.
Resumo:
As part of a comparative mapping study between sugarcane and sorghum, a sugarcane cDNA clone with homology to the maize Rp1-D rust resistance gene was mapped in sorghum. The cDNA probe hybridised to multiple loci, including one on sorghum linkage group (LG) E in a region where a major rust resistance QTL had been previously mapped. Partial sorghum Rp1-D homologues were isolated from genomic DNA of rust-resistant and -susceptible progeny selected from a sorghum mapping population. Sequencing of the Rp1-D homologues revealed five discrete sequence classes: three from resistant progeny and two from susceptible progeny. PCR primers specific to each sequence class were used to amplify products from the progeny and confirmed that the five sequence classes mapped to the same locus on LG E. Cluster analysis of these sorghum sequences and available sugarcane, maize and sorghum Rp1-D homologue sequences showed that the maize Rp1-D sequence and the partial sugarcane Rp1-D homologue were clustered with one of the sorghum resistant progeny sequence classes, while previously published sorghum Rp1-D homologue sequences clustered with the susceptible progeny sequence classes. Full-length sequence information was obtained for one member of a resistant progeny sequence class (Rp1-SO) and compared with the maize Rp1-D sequence and a previously identified sorghum Rp1 homologue (Rph1-2). There was considerable similarity between the two sorghum sequences and less similarity between the sorghum and maize sequences. These results suggest a conservation of function and gene sequence homology at the Rp1 loci of maize and sorghum and provide a basis for convenient PCR-based screening tools for putative rust resistance alleles in sorghum.
Resumo:
A firm's competitive strategy and innovation processes are strongly influenced by, and must be responsive to, its competitive environment. This is nowhere more strongly evident than in the high technology industries. In the present work, case studies of biotechnology new ventures are presented. These studies illustrate how an initial market entry strategy of parallel competition (through creative imitation) has enabled several biotechnology start-ups to reduce their mortality risk. We coin the term ''parallel bridge'' to describe this strategy. The parallel bridge provides early cash flows which support research and development and provide time for new ventures to develop core competencies, including a capacity to produce second and third horizon products that will sustain longer term competitiveness.
Resumo:
Despite current findings that consumers, on average, have negative attitudes to biotechnologies such as cloning and genetic engineering, considerable variability can be found in the direction and strength of these attitudes. This paper presents a path analysis of attitudinal, motivational, demographic and behavioural variables that influence consumer dispositions towards biotechnology. Among these variables, those found to be most important were: consumers' level of motivation to find natural foods; the extent to which they were motivated by convenience; whether they did the shopping for their household on a regular basis; and their sex. In terms of direct effects on dispositions to biotechnology, motivation to find natural foods had a very strong negative effect while convenience had a very strong positive effect. Sex had a moderate direct effect with women less likely to be positively disposed towards biotechnology than men. In an apparent contradiction, taking responsibility for household shopping had an equally strong positive effect on both naturalness and convenience. However, sex also played a crucial role here with a very strong effect on motivation to find natural foods (women more motivated), a minor effect on convenience (women less motivated) and a strong effect on responsibility for household shopping (women more likely to shop). The policy implications of these findings are important, given the apparent oppositional trends of some sections of the food industry to endorse biotechnology, and of the supermarkets to deliver `clean and green' non-GM foods to consumers. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Limitations on maximum transpiration rates, which are commonly observed as midday stomatal closure, have been observed even under well-watered conditions. Such limitations may be caused by restricted hydraulic conductance in the plant or by limited supply of water to the plant from uptake by the roots. This behaviour would have the consequences of limiting photosynthetic rate, increasing transpiration efficiency, and conserving soil water. A key question is whether the conservation of water will be rewarded by sustained growth during seed fill and increased grain yield. This simulation analysis was undertaken to examine consequences on sorghum yield over several years when maximum transpiration rate was imposed in a model. Yields were simulated at four locations in the sorghum-growing area of Australia for 115 seasons at each location. Mean yield was increased slightly ( 5 - 7%) by setting maximum transpiration rate at 0.4 mm h(-1). However, the yield increase was mainly in the dry, low-yielding years in which growers may be more economically vulnerable. In years with yield less than similar to 450 g m(-2), the maximum transpiration rate trait resulted in yield increases of 9 - 13%. At higher yield levels, decreased yields were simulated. The yield responses to restricted maximum transpiration rate were associated with an increase in efficiency of water use. This arose because transpiration was reduced at times of the day when atmospheric demand was greatest. Depending on the risk attitude of growers, incorporation of a maximum transpiration rate trait in sorghum cultivars could be desirable to increase yields in dry years and improve water use efficiency and crop yield stability.
Resumo:
Sorghum is the main dryland summer crop in NE Australia and a number of agricultural businesses would benefit from an ability to forecast production likelihood at regional scale. In this study we sought to develop a simple agro-climatic modelling approach for predicting shire (statistical local area) sorghum yield. Actual shire yield data, available for the period 1983-1997 from the Australian Bureau of Statistics, were used to train the model. Shire yield was related to a water stress index (SI) that was derived from the agro-climatic model. The model involved a simple fallow and crop water balance that was driven by climate data available at recording stations within each shire. Parameters defining the soil water holding capacity, maximum number of sowings (MXNS) in any year, planting rainfall requirement, and critical period for stress during the crop cycle were optimised as part of the model fitting procedure. Cross-validated correlations (CVR) ranged from 0.5 to 0.9 at shire scale. When aggregated to regional and national scales, 78-84% of the annual variation in sorghum yield was explained. The model was used to examine trends in sorghum productivity and the approach to using it in an operational forecasting system was outlined. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In recent years, many sorghum producers in the more marginal (