31 resultados para Soil organic C, tillage, residue management, N fertilization, silt, clay

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state C-13 nuclear magnetic resonance (NMR) with cross-polarisation (CP) and magic-angle-spinning (MAS) was used to: (a) examine the changes in carbon (C) composition of windrowed harvest residues during the first 3 years of hoop pine plantations in subtropical Australia; (b) assess the impacts of windrowed harvest residues on soil organic matter (SOM) composition and quality in the 0-10 cm soil layer. Harvest residues were collected from 0-, 1-, 2- and 3-year-old windrows of ca. 2.5 m width (15 m apart for 0-, 1- and 2-year-old sites and 10 m apart for 3-year-old site). Soils from the 0 to 10 cm soil layer were collected from the 1-, 2- and 3-year-old sites. The 13C NMR spectra of the harvest residues indicated the presence of lignin in the hoop pine wood, foliage and newly incorporated organic matter (NIOM). Condensed tannin structures were found in the decay-resistant bark, small wood and foliage, but were absent in other residue components and SOM. The NMR spectra of small wood samples contained condensed tannin structures because the outer layer of bark was not removed. NIOM showed a shift from foliage-like structures (celluloses) to lignin-type structures, indicating an incorporation of woody residues from the decomposing harvest residues. Suberins were also present in the small wood, foliage and bark. The 13C CP NMR spectra of SOM indicated that in areas where windrows were present, SOM did not show compositional changes. However, an increase in SOM quality under the windrows in the second year after their formation as characterised by the alkyl C/O-alkyl C (A/O-A) ratio was mainly due to inputs from the decomposition of the labile, readily available components of the windrowed harvest residues. (C) 2002 Published by Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the influence of harvest residue management practices on soil organic matter (SOM) composition and quality from two second-rotation Eucalyptus globulus plantations in southwestern Australia, using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy with cross-polarisation and magic-angle-spinning (CPMAS). Soil samples (0–5 cm) were collected every 12 months for 5 years from two sites that had contrasting soil types and fertility. Harvest residue management treatments established at both sites were (a) no harvest residues; and (b) double harvest residues. The use of 13C CPMAS and DD NMR spectroscopy enabled the successful non-destructive detection of SOM quality changes in the two E. globulus plantations. Relative intensities of 13C CPMAS NMR spectral regions were similar at both sites, and for both harvest residue treatments, indicating that SOM composition was also similar. Dipolar dephasing (DD) NMR spectra revealed resonances in SOM assigned to lignin and tannin structures, with larger resonances in the carbonyl and alkyl C regions that were indicative of cuticular material, enabling detection of changes in SOM quality. Retention of double harvest residues on the soil surface increased the soil quality compared with removal of all harvest residues at both sites as indicated by the NMR aromaticities, but this was most noticeable at Manjimup, which had greater initial soil fertility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A field study was conducted to investigate the fate of N-15-labelled nitrate applied at 20 kg N ha(-1) in a wet summer to microplots installed in areas under different residue management regimes in second-rotation hoop pine (Araucaria cunninghamii) plantations aged 1-3 years in south-east Queensland, Australia. PVC microplots of 235 mm diameter and 300 mm long were driven into 250 mm soil. There were three replications of each of eight treatments. These were areas just under and between 1-year-old windrows (ca. 2-3 m in width) of harvesting residues spaced 15 m apart, and with and without incorporated foliage residues (20 t DM ha(-1)); the areas just under and between 2- or 3-year-old windrows spaced 10 m apart. Only 7-29% of the added N-15 was recovered from the top 750 mm of the soil profile with the leaching loss estimated to be 70-86% over the 34-day period. The N-15 loss via denitrification was 3.7-6.3% by directly measuring the N-15 gases emitted. The microplots with the incorporated residues at the 1-year-old site had the highest N-15 loss (6.3%) as compared with the other treatments. The N-15 mass balance method together with the use of bromide (Br) tracer applied at 100 kg Br ha(-1) failed to obtain a reliable estimate of the denitrification loss. The microplots at the 1-year-old site had higher N-15 immobilisation rate (7.5-24.7%) compared with those at 2- and 3-year-old sites (2.1-3.6%). Incorporating the residues resulted in an increase in N-15 immobilisation rate (24.5-24.7%) compared with the control without the incorporated residues (8.4-14.3%). These findings suggest that climatic conditions played important roles in controlling the N-15 transformations in the wet summer season and that the residue management regimes could also significantly influence the N-15 transformations. Most of the N-15 loss occurred through leaching, but a considerable amount of the N-15 was lost through denitrification. Bromide proved to be an unsuitable tracer for monitoring the N-15 leaching and movement under the wet summer conditions. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of change in land-use from native vegetation to pasture (20-71 yr after conversion), and subsequent change from pasture to eucalypt plantation (7-10 yr after conversion) on soil organic matter quality was investigated using C-13 CP/MAS NMR spectroscopy. We studied surface soil (0-10 cm) from six sites representing a range of soil, and climate types from south-western Australia. Total C in the samples ranged from 1.6 to 5.5%, but the relative proportions of the four primary spectral regions (alkyl, O-alkyl, aromatic and carboxylic) were similar across the sites, and changes due to land-use at each site were relatively minor. Main impacts of changed land-use were higher O-alkyl (carbohydrate) material under pasture than under native vegetation and plantation (P = 0.048), and lower aromatic C under pasture than under native vegetation (P = 0.027). The decrease in aromatic C in pasture soils was related to time since clearing. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retention of sugarcane leaves and tops on the soil surface after harvesting has almost completely replaced pre- and post-harvest burning of crop residues in the Australian sugar industry. Since its introduction around 25 years ago, residue retention has increased soil organic matter to improve soil fertility as well as improve harvest flexibility and reduce erosion. However, in the wet tropics residue retention also poses potential problems of prolonged waterlogging, and late-season release of nitrogen which can reduce sugar content of the crop. The objective of this project is to examine the management of sugarcane residues in the wet tropics using a systems approach. Subsidiary objectives are (a) to improve understanding of nitrogen cycling in Australian sugarcane soils in the wet tropics, and (b) to identify ways to manage crop residues to retain their advantages and limit their disadvantages. Project objectives will be addressed using several approaches. Historic farm production data recorded by sugar mills in the wet tropics will be analysed to determine the effect of residue burning or retention on crop yield and sugar content. The impact of climate on soil processes will be highlighed by development of an index of nitrogen mineralisation using the Agricultural Production Systems Simulator (APSIM) model. Increased understanding of nitrogen cycling in Australian sugarcane soils and management of crop residues will be gained through a field experiment recently established in the Australian wet tropics. From this experiment the decomposition and nitrogen dynamics of residues placed on the soil surface and incorporated will be compared. The effect of differences in temperature, soil water content and pH will be further examined on these soils under glasshouse conditions. Preliminary results show a high ammonium to nitrate ratio in tropics soils, which may be due to low rates of nitrification that increase the retention of nitrogen in a form (ammonium) that is less subject to leaching. Further results will be presented at Congress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forty-four soils from under native vegetation and a range of management practices following clearing were analysed for ‘labile’ organic carbon (OC) using both the particulate organic carbon (POC) and the 333 mm KmnO4 (MnoxC) methods. Although there was some correlation between the 2 methods, the POC method was more sensitive by about a factor of 2 to rapid loss in OC as a result of management or land-use change. Unlike the POC method, the MnoxC method was insensitive to rapid gains in TOC following establishment of pasture on degraded soil. The MnoxC method was shown to be particularly sensitive to the presence of lignin or lignin-like compounds and therefore is likely to be very sensitive to the nature of the vegetation present at or near the time of sampling and explains the insensitivity of this method to OC gain under pasture. The presence of charcoal is an issue with both techniques, but whereas the charcoal contribution to the POC fraction can be assessed, the MnoxC method cannot distinguish between charcoal and most biomolecules found in soil. Because of these limitations, the MnoxC method should not be applied indiscriminately across different soil types and management practices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrate leaching below the crop root-zone in variable charge soils may be adsorbed at anion exchange sites, thereby temporarily reducing the risk of contamination of water bodies. The objectives of this study were (i) to investigate whether nitrate adsorption, accumulation, and retention in the Johnstone River Catchment of Far North Queensland wet tropics is widespread; (ii) to assess the capacity of soil in the Johnstone River Catchment to retain nitrate; and (iii) to deduce the consequences of nitrate adsorption/desorption on contamination of water bodies. Soil cores ranging from 8 to 12.5 m depth were taken from 28 sites across the catchment, representing 9 Ferrosol soil types under sugarcane (Saccharum officinarum-S) cultivation for at least 50 years and from rainforest. The cores were segmented at 0.5-m depth increments and subsamples were analysed for nitrate-N, cation and anion exchange capacities, pH, exchangeable cations (Ca, Mg, K, Na), soil organic C, electrical conductivity, sulfate-S, and chloride. Nitrate-N concentration under sugarcane ranged from 0 to 72.5 mg/kg, compared with 0 to 0.31 mg/kg under rainforest, both Pin Gin soils. The average N load in 1-12 m depth across 19 highly oxidic profiles of the Pin Gin soil series was 1550 kg/ha, compared with 185 kg/ha under 8 non-Pin Gin soils and 11 kg/ha in rainforest on a Pin Gin soil. Most of the nitrate retention was observed at depth of 2-12 m, particularly at 4-10 m, indicating that the accumulation was well below the crop root-zone. The average maximum potential nitrate retention capacity was 10.8 t/ha for the Pin Gin and 4.7 t/ha for the non-Pin Gin soil. Compared with the current N load, the soils still possess a large capacity to adsorb and retain nitrate in profiles. Retention of large quantities of the leached nitrate deep in most of the profiles has reduced the risk of contamination of water bodies. However, computations show that substantial quantities of the nitrate leached below the root-zone were not adsorbed and remain unaccounted for. This unaccounted nitrate might have entered both on- and off-site water bodies and/or have been denitrified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In variable charge soils, anion retention and accumulation through adsorption at exchange sites is a competitive process. The objectives of this study in the wet tropics of far north Queensland were to investigate (i) whether the pre-existing high sulphate in variable charge soils had any impact on the retention of chloride and nitrate, derived mostly from the applied fertilizer; and (ii) whether chloride competed with nitrate during the adsorption processes. Soil cores up to 12.5 m depth were taken from seven sites, representing four soil types, in the Johnstone River Catchment. Six of these sites had been under sugarcane (Saccharum officinarum-S) cultivation for at least 50 years and one was an undisturbed rainforest. The cores were segmented at 1.0 m depth increments, and subsamples were analysed for nitrate-N, cation (CEC)- and anion-exchange capacities (AEC), pH, exchangeable cations (Ca, Mg, K, Na), soil organic C (SOC), electrical conductivity (EC), sulphate-S, and chloride. Sulphate-S load in 1-12 m depth under cropping ranged from 9.4 to 73.9 t ha(-1) (mean= 40 t ha(-1)) compared with 74.4 t ha(-1) in the rainforest. Chloride load under cropping ranged from 1.5 to 9.6 t ha(-1) (mean= 4.9 t ha(-1)) compared to 0.9 t ha(-1) in the rainforest, and the nitrate-N load from 113 to 2760 kg ha(-1) (mean = 910 kg ha(-1)) under cropping compared to 12 kg ha(-1) in the rainforest. Regardless of the soil type, the total chloride or nitrate-N input in fertilisers was 7.5 t ha(-1), during the last 50 years. Sulphate-S distribution in soil profiles decreased with depth at >2 m, whereas bulges of chloride or nitrate-N were observed at depths >2 m. This suggests that chloride or nitrate adsorption and retention increased with decreasing sulphate dominance. Abrupt decreases in equivalent fraction of sulphate (EFSO4), at depths >2 m, were accompanied by rapid increases in equivalent fraction of chloride (EFCl), followed by nitrate (EFNO3). The stepwise regression for EFCl and EFNO3 indicated that nitrate retention was reduced by the pre-existing sulphate and imported chloride, whereas only sulphate reduced chloride adsorption. The results indicate that chloride and nitrate adsorption and retention occurred, in the order chloride>nitrate, in soils containing large amounts of sulphate under approximately similar total inputs of N- and Cl-fertilisers. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study was carried out on a previously eroded Oxic Paleustalf in Ibadan, southwestern Nigeria to determine the extent of soil degradation under mound tillage with some herbaceous legumes and residue management methods. A series of factorial experiments was carried out on 12 existing runoff plots. The study commenced in 1996 after a 5-year natural fallow. Mound tillage was introduced in 1997 till 1999. The legumes - Vigna unguiculata (cowpea), Mucuna pruriens and Pueraria phaseoloides - were intercropped with maize in 1996 and 1998 while yam was planted alone in 1997 and 1999. This paper covers 1997-1999. At the end of each year, residues were either burned or mulched on respective plots. Soil loss, runoff, variations in mound height, bulk density, soil water retention and sorptivity were measured. Cumulative runoff was similar among interactions of legume and residue management in 1997 (57-151 mm) and 1999 (206-397 mm). However, in 1998, cumulative runoff of 95 mm observed for Mucuna-burned residue was significantly greater than the 46 mm observed for cowpea-burned residue and the 39-51 mm observed for mulched residues of cowpea, Mucuna and Pueraria. Cumulative soil loss of 7.6 Mg ha(-1) observed for Mucuna-burned residue in 1997 was significantly greater than those for Pueraria-mulched (0.9 Mg ha(-1)) and Mucuna-mulched (1.4 Mg ha(-1)) residues whereas in 1999 it was similar to soil loss from cowpea treatments and Pueraria-burned residue (2.3-5.3 Mg ha(-1)). There were no significant differences in soil loss in 1998 (1-3.2 Mg ha(-1)) whereas Mucuna-burned residue had a greater soil loss (28.6 Mg ha(-1)) than mulched cowpea (6.9 Mg ha(-1)) and Pueraria (5.4 Ms ha(-1)). Mound heights (23 cm average) decreased non-linearly with cumulative rainfall. A cumulative rainfall of 500 mm removed 0.3-2.3 cm of soil from mounds in 1997, 3.5-6.9 cm in 1998 and 2.3-4.6 cm in 1999, indicating that (detached but less transported) soil from mounds was far higher than observed soil loss in each year. Soil water retention was improved at potentials ranging from -1 to -1500 kPa by Mucuna-mulched residue compared to the various burned-residue treatments. Also, mound sorptivity at -1 cm water head (14.3 cm h(-1/2)) was higher than furrow sorptivity (8.5 cm h(-1/2)), indicating differences in hydraulic characteristics between mound and furrow. Pueraria-mulched residues for mounds had the highest sorptivity of 17.24 cm h(-1/2), whereas the least value of 6.96 cm h(-1/2) was observed in furrow of Mucuna-burned residue. Pueraria phas eoloides was considered the best option for soil conservation on the previously eroded soil, cultivated with mound tillage. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil carbon is a major component of the terrestrial carbon cycle. The soils of the world contain more carbon than the combined total amounts occurring in vegetation and the atmosphere. Consequently, soils are a major reservoir of carbon and an important sink. Because of the relatively long period of time that carbon spends within the soil and is thereby withheld from the atmosphere, it is often referred to as being sequestered. Increasing the capacity of soils to sequester C provides a partial, medium-term countermeasure to help ameliorate the increasing CO2 levels in the atmosphere arising from fossil fuel burning and land clearing. Such action will also help to alleviate the environmental impacts arising from increasing levels of atmospheric CO2. The C sequestration potential of any soil depends on its capacity to store resistant plant components in the medium term and to protect and accumulate the humic substances (HS) formed from the transformations or organic materials in the soil environment. The sequestration potential of a soil depends on the vegetation it supports, its mineralogical composition, the depth of the solum, soil drainage, the availability of water and air, and the temperature of the soil environment. The sequestration potential also depends on the chemical characteristics of the soil organic matter and its ability to resist microbial decomposition. When accurate information for these features is incorporated in model systems, the potentials of different soils to sequester C can be reliably predicted. It is encouraging to know that improved soil and crop management systems now allow field yields to be maintained and soil C reserves to be increased, even for soils with depleted levels of soil C. Estimates of the soil C sequestration potential are discussed. Inevitably HS are the major components of the additionally sequestered C. It will be important to know more about the compositions and associations of these substances in the soil if we are able to predict reasonably accurately the ability of any soil type to sequester C in different cropping and soil management systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ecosystem management such as plant residue retention and prescribed burning can significantly affect soil organic matter (SOM) composition and, thereby, the closely associated carbon (C) and nitrogen (N) cycling processes, which underpin terrestrial ecosystem productivity and sustainability. Humic acid (HA) is an important SOM component and its chemical composition has attracted much attention. Here we report the first application of N-14 nuclear magnetic resonance (NMR) spectroscopy to soil HA study, revealing the surprising existence of nitrate-N and ammonia-N in the HAs. This newly discovered HA nitrate-N, though in a relatively low concentrations, is closely related to soil N availability and responsive to plant residue management regimes in contrasting forest ecosystems. The HA nitrate-N may be a useful and sensitive biochemical indicator of SOM quality in response to different ecosystem management regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agriculture in limited resource areas is characterized by small farms which an generally too small to adequately support the needs of an average farm family. The farming operation can be described as a low input cropping system with the main energy source being manual labor, draught animals and in some areas hand tractors. These farming systems are the most important contributor to the national economy of many developing countries. The role of tillage is similar in dryland agricultural systems in both the high input (HICS) and low input cropping systems (LICS), however, wet cultivation or puddling is unique to lowland rice-based systems in low input cropping systems. Evidence suggest that tillage may result in marginal increases in crop yield in the short term, however, in the longer term it may be neutral or give rise to yield decreases associated with soil structural degradation. On marginal soils, tillage may be required to prepare suitable seedbeds or to release adequate Nitrogen through mineralization, but in the longer term, however, tillage reduces soil organic matter content, increases soil erodibility and the emission of greenhouse gases. Tillage in low input cropping systems involves a very large proportion of the population and any changes: in current practices such as increased mechanization will have a large social impact such as increased unemployment and increasing feminization of poverty, as mechanization may actually reduce jobs for women. Rapid mechanization is likely to result in failures, but slower change, accompanied by measures to provide alternative rural employment, might be beneficial. Agriculture in limited resource areas must produce the food and fiber needs of their community, and its future depends on the development of sustainable tillage/cropping systems that are suitable for the soil and climatic conditions. These should be based on sound biophysical principles and meet the needs of and he acceptable to the farming communities. Some of the principle requirements for a sustainable system includes the maintenance of soil health, an increase in the rain water use efficiency of the system, increased use of fertilizer and the prevention of erosion. The maintenance of crop residues on the surface is paramount for meeting these requirements, and the competing use of crop residues must be met from other sources. These requirements can be met within a zonal tillage system combined with suitable agroforestry, which will reduce the need for crop residues. It is, however, essential that farmers participate in the development of any new technologies to ensure adoption of the new system. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information on decomposition of harvest residues may assist in the maintenance of soil fertility in second rotation (2R) hoop pine plantations (Araucaria cunninghamii Aiton ex A. Cunn.) of subtropical Australia. The experiment was undertaken to determine the dynamics of residue decomposition and fate of residue-derived N. We used N-15-labeled hoop pine foliage, branch, and stem material in microplots, over a 30-mo period following harvesting. We examined the decomposition of each component both singly and combined, and used C-13 cross-polarization and magic-angle spinning nuclear magnetic resonance (C-13 CPMAS NMR) to chart C transformations in decomposing foliage. Residue-derived N-15 was immobilized in the 0- to 5-cm soil layer, with approximately 40% N-15 recovery in the soil from the combined residues by the end of the 30-mo period. Total recovery of N-15 in residues and soil varied between 60 and 80% for the combined-residue microplots, with 20 to 40% of the residue N-15 apparently lost. When residues were combined within microplots the rate of foliage decomposition decreased by 30% while the rate of branch and stem decomposition increased by 50 and 40% compared with rates for these components when decomposed separately. Residue decomposition studies should include a combined-residue treatment. Based on C-15 CPMAS NMR spectra for decomposing foliage, we obtained good correlations for methoxyl C, aryl C, carbohydrate C and phenolic C with residue mass, N-15 enrichment, and total N. The ratio of carbohydrate C to methoxyl C may be useful as an indicator of harvest residue decomposition in hoop pine plantations.