6 resultados para Soil nutrient
em University of Queensland eSpace - Australia
Resumo:
On-site wastewater treatment and dispersal systems (OWTS) are used in non-sewered populated areas in Australia to treat and dispose of household wastewater. The most common OWTS in Australia is the septic tank-soil absorption system (SAS) - which relies on the soil to treat and disperse effluent. The mechanisms governing purification and hydraulic performance of a SAS are complex and have been shown to be highly influenced by the biological zone (biomat) which develops on the soil surface within the trench or bed. Studies suggest that removal mechanisms in the biomat zone, primarily adsorption and filtering, are important processes in the overall purification abilities of a SAS. There is growing concern that poorly functioning OWTS are impacting upon the environment, although to date, only a few investigations have been able to demonstrate pollution of waterways by on-site systems. In this paper we review some key hydrological and biogeochemical mechanisms in SAS, and the processes leading to hydraulic failure. The nutrient and pathogen removal efficiencies in soil absorption systems are also reviewed, and a critical discussion of the evidence of failure and environmental and public health impacts arising from SAS operation is presented. Future research areas identified from the review include the interactions between hydraulic and treatment mechanisms, and the biomat and sub-biomat zone gas composition and its role in effluent treatment.
Resumo:
The appropriate use of wastes is a significant issue for the pig industry due to increasing pressure from regulatory authorities to protect the environment from pollution. Nitrogen contained in piggery pond sludge ( PPS) is a potential source of supplementary nutrient for crop production. Nitrogen contribution following the application of PPS to soil was obtained from 2 field experiments on the Darling Downs in southern Queensland on contrasting soil types, a cracking clay ( Vertosol) and a hardsetting sandy loam (Sodosol), and related to potentially mineralisable N from laboratory incubations conducted under controlled conditions and NO3- accumulation in the field. Piggery pond sludge was applied as-collected ( wet PPS) and following stockpiling to dry ( stockpiled PPS). Soil NO3- levels increased with increased application rates of wet and stockpiled PPS. Supplementary N supply from PPS estimated by fertiliser equivalence was generally unsatisfactory due to poor precision with this method, and also due to a high level of NO3- in the clay soil before the first assay crop. Also low recoveries of N by subsequent sorghum ( Sorghum bicolor) and wheat ( Triticum aestivum) assay crops at the 2 sites due to low in-crop rainfall in 1999 resulted in low apparent N availability. Over all, 29% ( range 12 - 47%) of total N from the wet PPS and 19% ( range 0 - 50%) from the stockpiled PPS were estimated to be plant-available N during the assay period. The high concentration of NO3- for the wet PPS application on sandy soil after the first assay crop ( 1998 barley, Hordeum vulgare) suggests that leaching of NO3- could be of concern when high rates of wet PPS are applied before infrequent periods of high precipitation, due primarily to the mineral N contained in wet PPS. Low yields, grain protein concentrations, and crop N uptake of the sorghum crop following the barley crop grown on the clay soil demonstrated a low residual value of N applied in PPS. NO3- in the sandy soil before sowing accounted for 79% of the variation in plant N uptake and was a better index than anaerobically mineralisable N ( 19% of variation explained). In clay soil, better prediction of crop N uptake was obtained when both anaerobically mineralisable N (39% of variation explained) and soil pro. le NO3- were used in combination (R-2 = 0.49).
Resumo:
Root respiration uses a significant proportion of photosynthetically fixed carbon (C) and is a globally important source of C liberated from soils. Mangroves, which are an important and productive forest resource in many tropical and subtropical countries, sustain a high ratio of root to shoot biomass which may indicate that root respiration is a particularly important component in mangrove forest carbon budgets. Mangroves are often exposed to nutrient pollution from coastal waters. Here we assessed the magnitude of fine root respiration in mangrove forests in Belize and investigated how root respiration is influenced by nutrient additions. Respiration rates of excised fine roots of the mangrove, Rhizophora mangle L., were low (4.01 +/- 0.16 nmol CO2 g(-1) s(-1)) compared to those measured in temperate tree species at similar temperatures. In an experiment where trees where fertilized with nitrogen (N) or phosphorus (P) in low productivity dwarf forests (1-2 m height) and more productive, taller (47 m height) seaward fringing forests, respiration of fine roots did not vary consistently with fertilization treatments or with forest stature. Fine roots of taller fringe trees had higher concentrations of both N and P compared to dwarf trees. Fertilization with P enhanced fine root P concentrations in both dwarf and fringe trees, but reduced root N concentrations compared to controls. Fertilization with N had no effect on root N or P concentrations. Unlike photosynthetic C gain and growth, which is strongly limited by P availability in dwarf forests at this site, fine root respiration (expressed on a mass basis) was variable, but showed no significant enhancements with nutrient additions. Variation in fine root production and standing biomass are, therefore, likely to be more important factors determining C efflux from mangrove sediments than variations in fine root respiration per unit mass.