7 resultados para Software package SPICE

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of new experimental techniques for the determination of phase equilibria in complex slag systems, chemical thermodynamic, and viscosity models is reported. The new experimental data, and new thermodynamic and viscosity models, have been combined in a custom-designed computer software package to produce limiting operability diagrams for slag systems. These diagrams are used to describe phase equilibria and physicochemical properties in complex slag systems. The approach is illustrated with calculations on the system FeO-Fe2O3-CaO-SiO-Al2O3 at metallic iron saturation, slags produced in coal slagging gasifiers, and in the reprocessing of nonferrous smelting slags. This article was presented at the Mills Symposium Molten Metals, Slags and Glasses-Characterisation of Properties and Phenomena held in London in August 2000.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A finite difference method for simulating voltammograms of electrochemically driven enzyme catalysis is presented. The method enables any enzyme mechanism to be simulated. The finite difference equations can be represented as a matrix equation containing a nonlinear sparse matrix. This equation has been solved using the software package Mathematica. Our focus is on the use of cyclic voltammetry since this is the most commonly employed electrochemical method used to elucidate mechanisms. The use of cyclic voltammetry to obtain data from systems obeying Michaelis-Menten kinetics is discussed, and we then verify our observations on the Michaelis-Menten system using the finite difference simulation. Finally, we demonstrate how the method can be used to obtain mechanistic information on a real redox enzyme system, the complex bacterial molybdoenzyme xanthine dehydrogenase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the study presented was to implement a process model to simulate the dynamic behaviour of a pilot-scale process for anaerobic two-stage digestion of sewage sludge. The model implemented was initiated to support experimental investigations of the anaerobic two-stage digestion process. The model concept implemented in the simulation software package MATLAB(TM)/Simulink(R) is a derivative of the IWA Anaerobic Digestion Model No.1 (ADM1) that has been developed by the IWA task group for mathematical modelling of anaerobic processes. In the present study the original model concept has been adapted and applied to replicate a two-stage digestion process. Testing procedures, including balance checks and 'benchmarking' tests were carried out to verify the accuracy of the implementation. These combined measures ensured a faultless model implementation without numerical inconsistencies. Parameters for both, the thermophilic and the mesophilic process stage, have been estimated successfully using data from lab-scale experiments described in literature. Due to the high number of parameters in the structured model, it was necessary to develop a customised procedure that limited the range of parameters to be estimated. The accuracy of the optimised parameter sets has been assessed against experimental data from pilot-scale experiments. Under these conditions, the model predicted reasonably well the dynamic behaviour of a two-stage digestion process in pilot scale. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structure of a comprehensive research project into mine fires study applying the Ventgraph mine fire simulation software, preplanning of escape scenarios and general interaction with rescue responses is outlined. The project has Australian Coal Association Research Program (ACARP) funding and also relies on substantial mining company site support. This practical input from mine operators is essential and allows the approach to be introduced in the most creditable way. The effort is built around the introduction of fire simulation computer software to the Australian mining industry and the consequent modelling of fire scenarios in selected different mine layouts. Application of the simulation software package to the changing mine layouts requires experience to achieve realistic outcomes. Most Australian mines of size currently use a ventilation network simulation program. Under the project a small subroutine has been written to transfer the input data from the existing mine ventilation network simulation program to ‘Ventgraph’. This has been tested successfully. To understand fire simulation behaviour on the mine ventilation system, it is necessary to understood the possible effects of mine fires on various mine ventilation systems correctly first. Case studies demonstrating the possible effects of fires on some typical Australian coal mine ventilation circuits have been examined. The situation in which there is some gas make at the face and effects with fire have also been developed to emphasise how unstable and dangerous situations may arise. The primary objective of the part of the study described in this paper is to use mine fire simulation software to gain better understanding of how spontaneous combustion initiated fires can interact with the complex ventilation behaviour underground during a substantial fire. It focuses on the simulation of spontaneous combustion sourced heatings that develop into open fires. Further, it examines ventilation behaviour effects of spontaneous combustion initiated pillar fires and examines the difficulties these can be present if a ventilation reversal occurs. It also briefly examines simulation of use of the inertisation to assist in mine recovery. Mine fires are recognised across the world as a major hazard issue. New approaches allowing improvement in understanding their consequences have been developed as an aid in handling this complex area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Methods of analysing and optimising flotation circuits have improved significantly over the last 15 years. Mineral flotation is now generally better understood through major advances in measuring and modelling the sub-processes within the flotation system. JKSimFloat V6 is a user-friendly Windows-based software package incorporating simulation, mass balancing, and, currently under development, liberation data viewing and model fitting. This paper presents an overview of the development of the program up to its current status, and the plans established for the future. The application of the simulator, in particular, at various operations is also discussed with emphasis on the use of the program in improving flotation circuit performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, a novel approach is developed to evaluate the overall performance of a local area network as well as to monitor some possible intrusion detections. The data is obtained via system utility 'ping' and huge data is analyzed via statistical methods. Finally, an overall performance index is defined and simulation experiments in three months proved the effectiveness of the proposed performance index. A software package is developed based on these ideas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The XSophe computer simulation software suite consisting of a daemon, the XSophe interface and the computational program Sophe is a state of the art package for the simulation of electron paramagnetic resonance spectra. The Sophe program performs the computer simulation and includes a number of new technologies including; the SOPHE partition and interpolation schemes, a field segmentation algorithm, homotopy, parallelisation and spectral optimisation. The SOPHE partition and interpolation scheme along with a field segmentation algorithm greatly increases the speed of simulations for most systems. Multidimensional homotopy provides an efficient method for accurately tracing energy levels and hence tracing transitions in the presence of energy level anticrossings and looping transitions and allowing computer simulations in frequency space. Recent enhancements to Sophe include the generalised treatment of distributions of orientational parameters, termed the mosaic misorientation linewidth model and a faster more efficient algorithm for the calculation of resonant field positions and transition probabilities. For complex systems the parallelisation enables the simulation of these systems on a parallel computer and the optimisation algorithms in the suite provide the experimentalist with the possibility of finding the spin Hamiltonian parameters in a systematic manner rather than a trial-and-error process. The XSophe software suite has been used to simulate multifrequency EPR spectra (200 MHz to 6 00 GHz) from isolated spin systems (S > ~½) and coupled centres (Si, Sj _> I/2). Griffin, M.; Muys, A.; Noble, C.; Wang, D.; Eldershaw, C.; Gates, K.E.; Burrage, K.; Hanson, G.R."XSophe, a Computer Simulation Software Suite for the Analysis of Electron Paramagnetic Resonance Spectra", 1999, Mol. Phys. Rep., 26, 60-84.