9 resultados para Sire
em University of Queensland eSpace - Australia
Resumo:
A low-density, male-based linkage map was constructed as one of the objectives of the International Equine Gene Mapping Workshop. Here we report the second generation map based on testing 503 half-sibling offspring from 13 sire families for 344 informative markers using the crimap program. The multipoint linkage analysis localized 310 markers (90%) with 257 markers being linearly ordered. The map included 34 linkage groups representing all 31 autosomes and spanning 2262 cM with an average interval between loci of 10.1 cM. This map is a milestone in that it is the first map with linkage groups assigned to each of the 31 automosomes and a single linkage group to all but three chromosomes.
Resumo:
Translocation is an important tool for the conservation of species that have suffered severe range reductions. The success of a translocation should be measured not only by the survival of released animals, but by the reproductive output of individuals and hence the establishment of a self-sustaining population. The bridled nailtail wallaby is an endangered Australian macropod that suffered an extensive range contraction to a single remaining wild population. A translocated population was established and subsequently monitored over a four year period. The aim of this study was to measure the reproductive success of released males using genetic tools and to determine the factors that predicted reproductive success. Captive-bred and wild-caught animals were released and we found significant variation in male reproductive success among release groups. Variation in reproductive success was best explained by individual male weight, survival and release location rather than origin. Only 26% of candidate males were observed to sire an offspring during the study. The bridled nailtail wallaby is a sexually dimorphic, polygynous macropod and reproductive success is skewed toward large males. Males over 5800 g were six times more likely to sire an offspring than males below this weight. This study highlights the importance of considering mating system when choosing animals for translocation. Translocation programs for polygynous species should release a greater proportion of females, and only release males of high breeding potential. By maximizing the reproductive output of released animals, conservation managers will reduce the costs of translocation and increase the chance of successfully establishing a self-sustaining population. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Genetic analysis in animals has been used for many applications, such as kinship analysis, for determining the sire of an offspring when a female has been exposed to multiple males, determining parentage when an animal switches offspring with another dam, extended lineage reconstruction, estimating inbreeding, identification in breed registries, and speciation. It now also is being used increasingly to characterize animal materials in forensic cases. As such, it is important to operate under a set of minimum guidelines that assures that all service providers have a template to follow for quality practices. None have been delineated for animal genetic identity testing. Based on the model for human DNA forensic analyses, a basic discussion of the issues and guidelines is provided for animal testing to include analytical practices, data evaluation, nomenclature, allele designation, statistics, validation, proficiency testing, lineage markers, casework files, and reporting. These should provide a basis for professional societies and/or working groups to establish more formalized recommendations.
Resumo:
QTL detection experiments in livestock species commonly use the half-sib design. Each male is mated to a number of females, each female producing a limited number of progeny. Analysis consists of attempting to detect associations between phenotype and genotype measured on the progeny. When family sizes are limiting experimenters may wish to incorporate as much information as possible into a single analysis. However, combining information across sires is problematic because of incomplete linkage disequilibrium between the markers and the QTL in the population. This study describes formulae for obtaining MLEs via the expectation maximization (EM) algorithm for use in a multiple-trait, multiple-family analysis. A model specifying a QTL with only two alleles, and a common within sire error variance is assumed. Compared to single-family analyses, power can be improved up to fourfold with multi-family analyses. The accuracy and precision of QTL location estimates are also substantially improved. With small family sizes, the multi-family, multi-trait analyses reduce substantially, but not totally remove, biases in QTL effect estimates. In situations where multiple QTL alleles are segregating the multi-family analysis will average out the effects of the different QTL alleles.
Resumo:
Determining the dimensionality of G provides an important perspective on the genetic basis of a multivariate suite of traits. Since the introduction of Fisher's geometric model, the number of genetically independent traits underlying a set of functionally related phenotypic traits has been recognized as an important factor influencing the response to selection. Here, we show how the effective dimensionality of G can be established, using a method for the determination of the dimensionality of the effect space from a multivariate general linear model introduced by AMEMIYA (1985). We compare this approach with two other available methods, factor-analytic modeling and bootstrapping, using a half-sib experiment that estimated G for eight cuticular hydrocarbons of Drosophila serrata. In our example, eight pheromone traits were shown to be adequately represented by only two underlying genetic dimensions by Amemiya's approach and factor-analytic modeling of the covariance structure at the sire level. In, contrast, bootstrapping identified four dimensions with significant genetic variance. A simulation study indicated that while the performance of Amemiya's method was more sensitive to power constraints, it performed as well or better than factor-analytic modeling in correctly identifying the original genetic dimensions at moderate to high levels of heritability. The bootstrap approach consistently overestimated the number of dimensions in all cases and performed less well than Amemiya's method at subspace recovery.
Resumo:
Objective To determine the mode of inheritance of congenital proportionate dwarfism in Angus and Angus crossbred cattle, initially detected in two commercial beef herds in northern New South Wales. Design Matings of normal carrier sires to unrelated cows of diverse breeds, and of one carrier sire to his unaffected daughters. An unrelated Piedmontese bull was also mated to unaffected daughters of the carrier sires. Procedure Two carrier Angus bulls and nine unaffected daughters, all of whom were completely indistinguishable from normal animals, were purchased for controlled breeding studies under known nutritional and disease conditions. Affected and carrier individuals were examined for the presence of obvious chromosomal abnormalities. Results Angus dwarfism has been successfully reproduced under controlled experimental conditions over successive years using unrelated dams and is undoubtedly heritable. The high frequency of occurrence of affected individuals (23/61 = 0.38 +/- .06) among the progeny of matings of the Angus sires to unrelated females of diverse breeding is not compatible with recessive inheritance, because of the negligible frequency of proportionate dwarfism in the breeds of the dams. Both paternal and maternal transmission of the defect was demonstrated, so that imprinting in the strict sense of a gene that is only expressed when received from the male parent appears not to be involved. Tested individuals showed no evidence of gross chromosomal abnormality. Dominant autosomal inheritance with incomplete penetrance was indicated by the lack of expression of the defective gene in the two Angus sires and in three unaffected daughters who produced dwarf calves from matings to the Piedmontese bull. Conclusions The mode of inheritance is that of a single autosomal dominant gene with a penetrance coefficient of 0.75 +/- 0.12, estimated from the observed incidence of 23/61 affected offspring of the two carrier Angus bulls mated to unrelated dams. Simple genetic models involving either (i) an unstable mutant which changes at high frequency to the expressed dominant dwarfing allele during gametogenesis, or (ii) a dominant allele with penetrance determined by an unlinked modifying locus, are shown to be compatible with the experimental data. Both models indicate that penetrance of the dwarfing gene may possibly be higher in matings involving carrier daughters of the two Angus bulls.
Resumo:
Several behavioral studies of large, gregarious, and sexually dimorphic macropods have shown that males form dominance hierarchies and large males have the highest reproductive success. The bridled nailtail wallaby (Onychogalea fraenata) is a smaller and strongly sexually dimorphic macropod, but is also highly solitary and males do not form dominance hierarchies that are maintained temporally or spatially. Genetic studies of paternity have shown that large males are the most reproductively successful and only one-quarter of males sire offspring at any one time. The aim of this study was to investigate the tactics that males adopt to secure access to females at the time of estrus and to investigate whether females can influence which males have access to them. This study was conducted using 2 wild, free-ranging populations of bridled nailtail wallabies. Females in estrus were located and observed. and the total number of males present, the relative weight rank of each mate, and interactions between individuals were recorded. Females showed a preference for large males and incited male-male competition when the group of males present was large. Unlike other dimorphic macropods, fights among males were rare and were restricted to males of similar size. Large males gained access to females by guarding and following them closely and threatening other males who attempted to gain access. Smaller males spent less time with females, suggesting that small males may leave multimale groups in an attempt to locate unguarded females. Given the solitary nature of this species and the lack of a stable dominance hierarchy to influence male reproductive success. mate searching and mate guarding may be important male reproductive tactics in this species.
Resumo:
There is substantial variation in bull breeding soundness evaluation procedures and reports in Australia; the situation is compounded by difficulties in interpretation and the validity of many reports. In an effort to overcome this, the scientific literature was reviewed [Fordyce G. In: Fordyce G, editor. Bull fertility: selection and management in Australia. Eight Mile Plains, Australia: Australian Cattle Vets; 2002] and the needs of stakeholders were considered in preparing a manual, Evaluating and Reporting Bull Fertility [Entwistle KW, Fordyce G. Evaluating and reporting bull fertility. Eight Mile Plains, Australia: Australian Cattle Vets; 2003.] that outlined standards for assessing and reporting bull breeding soundness. A new recording and reporting system, called Bull Reporter, is based on standards from this manual and groups bull fertility traits into five summary categories: Scrotum, Physical, Crush-side Semen, Sperm Morphology, and Serving. The client will generally select which categories they wish to have included in the evaluation to suit their specific purposes. While there is adequate room for comments, the veterinarian is not required to make an overall judgment of whether the bull has normal capacity to sire calves under natural mating management, but ensures the standards for each selected category are met. Professional, standardised, easy-to-read reports are produced either electronically [Entwistle KW, Fordyce G. Evaluating and reporting bull fertility. Eight Mile Plains, Australia: Australian Cattle Vets; 2003.] or manually. A bull owner or their agent signs the certificate to affirm that bulls have not undergone procedures to rectify faults which may have otherwise caused them to fail the standards. An accreditation system for assessing sperm morphology was established because of its demonstrated relationship with pregnancy rates and because of the difficulties in achieving consistent and accurate assessments among laboratories. It is considered that Bull Reporter is applicable to beef and dairy bulls across all levels of management, genotypes and environments throughout Australia, with substantial potential for application elsewhere in the world. Crown Copyright (c) 2006 Published by Elsevier Inc. All rights reserved.
Resumo:
The Australian beef industry places the greatest value in bulls, in comparison to cows, for prime beef production. Male carcasses can be sold for a larger profit due to their increased muscle mass. This project aims to demonstrate the feasibility of producing male animals that can sire male only offspring, through a transgenic approach in mice that could later be translated into livestock production systems. The mouse Sry (Sex determining region on the Y) gene has been shown to provide the initiating molecular signal leading to male sex determination in mammals. Sry has also been shown to cause sex reversal in XX mice transgenic for the gene. In this project Sry will be targeted to a locus not subject to X-inactivation on the X chromosome of XY mice. These mice will be bred to determine how the transgene is passed on, to determine expression of the transgene, and to assess its activity in causing XX sex reversal. The male mice transgenic for the Sry gene on their X chromosome will be produced using tetraploid aggregation, which in a single step produces 100% ES cell derived embryos. The same target locus can later be used to introduce the bovine SRY gene onto the X chromosome of bovidae species and using germ cell transplantation produce sex reversed animals. This would bypass the need for expensive chimera crosses and provide farmers with a stud bull capable of producing only sons.