12 resultados para Single-stranded-dna
em University of Queensland eSpace - Australia
Resumo:
Systemic lupus erythematosus (SLE) is characterised by the production of autoantibodies against ubiquitous antigens, especially nuclear components. Evidence makes it clear that the development of these autoantibodies is an antigen-driven process and that immune complexes involving DNA-containing antigens play a key role in the disease process. In rodents, DNase I is the major endonuclease present in saliva, urine and plasma, where it catalyses the hydrolysis of DNA, and impaired DNase function has been implicated in the pathogenesis of SLE. In this study we have evaluated the effects of transgenic overexpression of murine DNase I endonucleases in vivo in a mouse model of lupus. We generated transgenic mice having T-cells that express either wild-type DNase I (wt. DNase I) or a mutant DNase I ( ash. DNase I), engineered for three new properties - resistance to inhibition by G-actin, resistance to inhibition by physiological saline and hyperactivity compared to wild type. By crossing these transgenic mice with a murine strain that develops SLE we found that, compared to control nontransgenic littermates or wt. DNase I transgenic mice, the ash. DNase I mutant provided significant protection from the development of anti-single-stranded DNA and anti-histone antibodies, but not of renal disease. In summary, this is the first study in vivo to directly test the effects of long-term increased expression of DNase I on the development of SLE. Our results are in line with previous reports on the possible clinical benefits of recombinant DNase I treatment in SLE, and extend them further to the use of engineered DNase I variants with increased activity and resistance to physiological inhibitors.
Resumo:
Mouse follicular B cells express TLR9 and respond vigorously to stimulation with single-stranded CpG-oligodeoxynucleotides (ODN). Surprisingly, follicular B cells do not respond to direct stimulation with other TLR9 ligands, such as bacterial DNA or class A(D) CpG-ODN capable of forming higher-order structures, unless other cell types are present. Here, we show that priming with interferons or with B cell-activating factor, or simultaneous co-engagement of the B cell receptor for antigen (BCR), can overcome this unresponsiveness. The effect of interferons occurs at the transcriptional level and is mediated through an autocrine/paracrine loop, which is dependent on IRF-1, IL-6 and IL-12 p40. We hypothesize that the lack of bystander activation of follicular B cells with more complex CpG ligands may be an important safety mechanism for avoiding autoimmunity. This will prevent resting B cells from responding to foreign or self-derived hypomethylated double-stranded CpG ligands unless these ligands are either delivered through the B cell receptor or under conditions where B cells are simultaneously co-engaged by activated plasmacytoid dendritic cells or TH1 cells. A corollary is that the heightened responsiveness of lupus B cells to TLR9-induced stimulation cannot be ascribed to unprimed follicular B cells, but is rather mediated by hypersensitive marginal zone B cells.
Resumo:
The heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a multi-tasking protein that acts in the cytoplasm and nucleus. We have explored the possibility that this protein is associated with telomeres and participates in their maintenance. Rat brain hnRNP A2 was shown to have two nucleic acid binding sites. In the presence of heparin one site binds single-stranded oligodeoxyribonucleotides irrespective of sequence but not the corresponding oligoribonucleotides. Both the hnRNP A2-binding cis-acting element for the cytoplasmic RNA trafficking element, A2RE, and the ssDNA telomere repeat match a consensus sequence for binding to a second sequence-specific site identified by mutational analysis. hnRNP A2 protected the telomeric repeat sequence, but not the complementary sequence, against DNase digestion: the glycine-rich domain was found to be necessary, but not sufficient, for protection. The N-terminal RRM (RNA recognition motif) and tandem RRMs of hnRNP A2 also bind the single-stranded, template-containing segment of telomerase RNA. hnRNP A2 colocalizes with telomeric chromatin in the subset of PML bodies that are a hallmark of ALT cells, reinforcing the evidence for hnRNPs having a role in telomere maintenance. Our results support a model in which hnRNP A2 acts as a molecular adapter between single-stranded telomeric repeats, or telomerase RNA, and another segment of ssDNA.
Resumo:
An international collection of the sugarcane ratoon stunting disease pathogen, Leifsonia xyli subsp. xyli, was analysed to assess genetic diversity. DNA fingerprinting using BOX primers was performed on 105 isolates, comprising 65 Australian isolates and an additional 40 isolates from Indonesia (n = 8), Japan (n = 1), USA (n = 3), Brazil (n = 2), Mali (n = 2), Zimbabwe (n = 13), South Africa (n = 9) and Reunion (n = 2). Sixty-two of these isolates were also screened using ERIC primers. No variation was found among any of the isolates. The intergenic spacer (IGS) region of the ribosomal RNA genes from 54 isolates was screened for sequence variation using single-stranded conformational polymorphism (SSCP), but none was observed. Direct sequencing of the IGS from a subset of nine isolates, representing all of the countries sampled in this study, confirmed the results of the SSCP analysis. Likewise, no sequence variation was found in the 16S ribosomal RNA genes of the same subset. Four Colombian isolates from sugarcane, morphologically similar to L. xyli subsp. xyli, were putatively shown to be an undescribed Agrococcus species of unknown pathogenicity. The lack of genetic variation among L. xyli subsp. xyli isolates, independent of time of sampling, cultivar of isolation, or country of origin, suggests the worldwide spread of a single pathogenic clone, and further suggests that sugarcane cultivars resistant to ratoon stunting disease in one area should retain this property in other regions.
Resumo:
DNA of Leifsonia xyli subsp. xyli (Lxx), the causal agent of ratoon stunting disease of sugarcane, was detected in the fibrovascular fluid of sugarcane plants using random amplified polymorphic DNA PCR-based amplification using two 10-mer oligonucleotide primers. The primers OPC-02 and OPC-11 produced Lxx-specific markers of approximately 800 bp and 1000 bp, respectively. A cloned DNA fragment from the 800 bp PCR product (pSKC2-800) hybridised to a single genomic DNA fragment from Lxx when used as a probe in Southern hybridisation. This cloned fragment did not hybridise to L. xyli subsp. cynodontis (Lxc), or L. xyli-like bacteria isolated from grasses in Australia, indicating the usefulness of this DNA fragment as a specific probe for Lxx. A cloned fragment from the 1000 bp PCR product ( pSKC11-1000) hybridised to three genomic fragments in Lxx isolates, one genomic fragment in two of the four isolates of L. xyli-like bacteria, and in two of the four isolates of Lxc isolated from the USA. These results indicate that L. xyli-like bacteria are more likely to be related to Lxc than Lxx. These probes did not hybridise to the DNA from strains of the species of Clavibacter, Rathayibacter, Acidovorax, Ralstonia, Pseudomonas and Xanthomonas tested. Two oligonucleotide primers (21-mer) designed from the pSKC2-800 sequences specifically amplified template DNA from Lxx and detected as few as 5 x 10(4) cells/mL in fibrovascular fluid from sugarcane plants infected with Lxx.
Resumo:
The genome of some icosahedral RNA viruses plays an essential role in capsid assembly and structure. In T=3 particles of the nodavirus Pariacoto virus (PaV), a remarkable 35% of the single-stranded RNA genome is icosahedrally ordered. This ordered RNA can be visualized at high resolution by X-ray crystallography as a dodecahedral cage consisting of 30 24-nucleotide A-form RNA duplex segments that each underlie a twofold icosahedral axis of the virus particle and interact extensively with the basic N-terminal region of 60 subunits of the capsid protein. To examine whether the PaV genome is a specific determinant of the RNA structure, we produced virus-like particles (VLPs) by expressing the wild-type capsid protein open reading frame from a recombinant baculovirus. VLPs produced by this system encapsidated similar total amounts of RNA as authentic virus particles, but only about 6% of this RNA was PaV specific, the rest being of cellular or baculovirus origin. Examination of the VLPs by electron cryomicroscopy and image reconstruction at 15.4-Angstrom resolution showed that the encapsidated RNA formed a dodecahedral cage similar to that of wild-type particles. These results demonstrate that the specific nucleotide sequence of the PaV genome is not required to form the dodecahedral cage of ordered RNA.
Resumo:
All single-stranded 'positive-sense' RNA viruses that infect mammalian, insect or plant cells rearrange internal cellular membranes to provide an environment facilitating virus replication. A striking feature of these unique membrane structures is the induction of 70-100 nm vesicles (either free within the cytoplasm, associated with other induced vesicles or bound within a surrounding membrane) harbouring the viral replication complex (RC). Although similar in appearance, the cellular composition of these vesicles appears to vary for different viruses, implying different organelle origins for the intracellular sites of viral RNA replication. Genetic analysis has revealed that induction of these membrane structures can be attributed to a particular viral gene product, usually a non-structural protein. This review will highlight our current knowledge of the formation and composition of virus RCs and describe some of the similarities and differences in RNA-membrane interactions observed between the virus families Flaviviridae and Picornaviridae.
Resumo:
Nevoid Basal Cell Carcinoma Syndrome (NBCCS) is an autosomal dominant disorder characterised by multiple basal cell carcinomas, palmar and plantar pitting, odontogenic keratocysts of the jaws and bilamellar calcification of the falx. Mutations in the PTCH gene are responsible for NBCCS but most studies have found mutations in less than half of the cases tested. We used denaturing high performance liquid chromatography (DHPLC) to screen for PTCH mutations in 28 NBCCS cases, most of whom had been previously evaluated by single stranded conformation polymorphism analysis but found to be negative. Protein truncating (n = 10) and missense or indel (n = 4) mutations were found in 14/28 (50%) cases and one additional case carried an unclassified variant, c.2777G>C. Thirteen of the variants were novel. The mutation frequency was similar in inherited and de novo cases. Three of the missense and indel mutations were in the sterol-sensing domain, and one was in the sixth transmembrane domain.
Resumo:
Transgenic tobacco plants, carrying a Potato virus Y (PVY)-NIa hairpin sequence separated by a unique unrelated spacer sequence were specifically silenced and highly resistant to PVY infection. In such plants neither PVY-NIa nor spacer transgene transcripts were detectable by specific quantitative real time reverse transcriptase PCR (RT-qPCR) assays of similar relative efficiencies developed for direct comparative analysis. However, small interfering RNAs (siRNAs) specific for the PVY sequence of the transgene and none specific for the LNYV spacer sequence were detected. Following infection with Cucumber mosaic virus (CMV), which suppresses dsRNA-induced RNA silencing, transcript levels of PVY-NIa as well as spacer sequence increased manifold with the same time course. The cellular abundance of the single-stranded (ss) spacer sequence was consistently higher than that of PVY dsRNA in all cases. The results show that during RNA silencing and its suppression of a hairpin transcript in transgenic tobacco, the ssRNA spacer sequence is affected differently than the dsRNA. In PVY-silenced plants. the spacer is efficiently degraded by a mechanism not involving the accumulation of siRNAs, while following suppression of RNA silencing by CMV, the spacer appears protected from degradation. Crown Copyright (c) 2006 Published by Elsevier B.V. All rights reserved.
Resumo:
Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a multitasking protein involved in RNA packaging, alternative splicing of pre-mRNA. telomere maintenance, cytoplasmic RNA trafficking, and translation. It binds short segments of single-stranded nucleic acids, including the A2RE11 RNA element that is necessary and sufficient for cytoplasmic transport of a subset of rnRNAs in oligodendrocytes and neurons. We have explored the structures of hnRNP A2, its RNA recognition motifs (RRMs) and Gly-rich module, and the RRM complexes with A2RE11. Circular dichroism spectroscopy showed that the secondary structure of the first 189 residues of hnRNP A2 parallels that of the tandem beta alpha beta beta alpha beta RRMs of its paralogue, hnRNP A1, previously deduced from X-ray diffraction studies. The unusual GRD was shown to have substantial beta-sheet and beta-turn structure. Sedimentation equilibrium and circular dichroism results were consistent with the tandem RRM region being monomeric and supported earlier evidence for the binding of two A2RE11 oligoribonucleotides to this domain, in contrast to the protein dimer formed by the complex of hnRNP A1 with the telomeric ssDNA repeat. A three-dimensional structure for the N-terminal, two-RRM-containing segment of hnRNP A2 was derived by homology modeling. This structure was used to derive a model for the complex with A2RE11 using the previously described interaction of pairs of stacked nucleotides with aromatic residues on the RRM beta-sheet platforms, conserved in other RRM-RNA complexes, together with biochemical data and molecular dynamics-based observations of inter-RRM mobility.
Resumo:
In order to investigate population history and demography in skinks endemic to the wet tropics of Australia, multiple nuclear DNA markers were sought. The utility of 72 primers (including 63 published intron-spanning 'CATS' primers) was tested.. Seven loci were characterized and shown to be single copy by single-strand conformation polymorphism analysis. Primers to five nuclear loci were developed, four with utility in skinks and three with utility in frogs. These observations extend the available information on intron-spanning primers for amphibians and reptiles.