2 resultados para Single Strap Joint

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose. The ability to sense the position of limb segments is a highly specialised proprioceptive function important for control of movement. Abnormal knee proprioception has been found in association with several musculoskeletal pathologies but whether nociceptive Stimulation can produce these proprioceptive changes is unclear. This study evaluated the effect of experimentally induced knee pain on knee joint position sense (JPS) in healthy individuals. Study design. Repeated measures, within-subject design. Methods. Knee JPS was tested in 16 individuals with no history of knee pathology under three experimental conditions: baseline control, a distraction task and knee pain induced by injection of hypertonic saline into the infrapatellar fat pad. Knee JPS was measured using active ipsilateral limb matching responses at 20degrees and 60degrees flexion whilst non-weightbearing (NWB) and 20degrees flexion single leg stance. During the tasks, the subjective perception of distraction and severity of pain were measured using 11-point numerical rating scales. Results. Knee JPS was not altered by acute knee pain in any of the positions tested. The distraction task resulted in poorer concentration, greater JPS absolute errors at 20degrees NWB, and greater variability in errors during the WB tests. There were no significant correlations between levels of pain and changes in JPS errors. Changes in JPS with pain and distraction were inversely related to baseline knee JPS variable error in all test positions (r = -0.56 to -0.91) but less related to baseline absolute error. Conclusion. Knee JPS is reduced by an attention-demanding task but not by experimentally induced pain. (C) 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Activity of the vasti has been argued to vary through knee range of movement due to changes in passive support of the patellofemoral joint and the relative contribution of these muscles to knee extension. Efficient function of the knee is dependent on optimal control of the patellofemoral joint, largely through coordinated activity of the medial and lateral quadriceps. Motor unit synchronization may provide a mechanism to coordinate the activity of vastus medialis (VMO) and vastus lateralis (VL), and may be more critical in positions of reduced passive support for the patellofemoral joint (i.e., full extension). Therefore, the aim of this study was to determine whether the degree of motor unit synchronization between the vasti muscles is dependent on joint angle. Electromyographic (EMG) recordings of single motor unit action potentials (MUAPs) were made from VMO and multiunit recordings from VL during isometric contractions of the quadriceps at 0 degrees, 30 degrees, and 60 degrees of knee flexion. The degree of synchronization between motor unit firing was evaluated by identification of peaks in the rectified EMG averages of VL, triggered from MUA-Ps in VMO. The proportion of cases in which there was a significant peak in the triggered averages was calculated. There was no significant difference in the degree of synchronization between the vasti at different knee angles (p = 0.57). These data suggest that this basic coordinative mechanism between the vasti muscles is controlled consistently throughout knee range of motion, and is not augmented at specific angles where the requirement for dynamic control of stability is increased. (D 2006 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.