5 resultados para Simulation Environments

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel strategy linking physiology with plant breeding, molecular biology and computer simulation modelling is outlined here which aims to enhance selection of high yielding wheats with superior performance under conditions of water scarcity for the northern, subtropical, winter cereals region of Australia. In previous research, a source of high yield and performance under dry conditions for the target region was identified in a drought resistant parent. A large population of fixed lines for molecular genetic studies has been developed using the drought resistant line and widely grown current Australian variety. A preliminary study comparing the parent varieties was conducted in the winter of 2003. The two varieties were similar in many aspects of phenology, morphology and physiology. However, several important traits were identified that likely contribute to higher grain mass and yield of the drought resistant parent, including differences in the number and dry mass of tillers and spikes during development and the ability of drought resistant line to retain green leaves longer during grain filling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on a current research project in which virtual reality simulators are being investigated as a means of simulating hazardous Rail work conditions in order to allow train drivers to practice decision-making under stress. When working under high stress conditions train drivers need to move beyond procedural responses into a response activated through their own problem-solving and decision-making skills. This study focuses on the use of stress inoculation training which aims to build driver’s confidence in the use of new decision-making skills by being repeatedly required to respond to hazardous driving conditions. In particular, the study makes use of a train cab driving simulator to reproduce potentially stress inducing real-world scenarios. Initial pilot research has been undertaken in which drivers have experienced the training simulation and subsequently completed surveys on the level of immersion experienced. Concurrently drivers have also participated in a velocity perception experiment designed to objectively measure the fidelity of the virtual training environment. Baseline data, against which decision-making skills post training will be measured, is being gathered via cognitive task analysis designed to identify primary decision requirements for specific rail events. While considerable efforts have been invested in improving Virtual Reality technology, little is known about how to best use this technology for training personnel to respond to workplace conditions in the Rail Industry. To enable the best use of simulators for training in the Rail context the project aims to identify those factors within virtual reality that support required learning outcomes and use this information to design training simulations that reliably and safely train staff in required workplace accident response skills.