3 resultados para Simulating Materials Failure

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Finite-element simulations are used to obtain many thousands of yield points for porous materials with arbitrary void-volume fractions with spherical voids arranged in simple cubic, body-centred cubic and face-centred cubic three-dimensional arrays. Multi-axial stress states are explored. We show that the data may be fitted by a yield function which is similar to the Gurson-Tvergaard-Needleman (GTN) form, but which also depends on the determinant of the stress tensor, and all additional parameters may be expressed in terms of standard GTN-like parameters. The dependence of these parameters on the void-volume fraction is found. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a way to represent Mohr-Coulomb failure within a mantle-convection fluid dynamics code. We use a viscous model of deformation with an orthotropic viscoplasticity (a different viscosity is used for pure shear to that used for simple shear) to define a prefered plane for slip to occur given the local stress field. The simple-shear viscosity and the deformation can then be iterated to ensure that the yield criterion is always satisfied. We again assume the Boussinesq approximation, neglecting any effect of dilatancy on the stress field. An additional criterion is required to ensure that deformation occurs along the plane aligned with maximum shear strain-rate rather than the perpendicular plane, which is formally equivalent in any symmetric formulation. We also allow for strain-weakening of the material. The material can remember both the accumulated failure history and the direction of failure. We have included this capacity in a Lagrangian-integration-point finite element code and show a number of examples of extension and compression of a crustal block with a Mohr-Coulomb failure criterion. The formulation itself is general and applies to 2- and 3-dimensional problems.