72 resultados para Signal transducers and activators of transcription (STAts)
em University of Queensland eSpace - Australia
Resumo:
Although it is the best characterized in vitro model of GH action, the mechanisms used by GH to induce differentiation of murine 3T3-F442A preadipocytes remain unclear. Here we have examined the role of three transcriptional regulators in adipogenesis. These regulators are either rapidly induced in response to GH [Stra13, signal transducer and activator of transcription (Stat) 3] or of central importance to GH signaling (Stat5). Retroviral transfection of 3T3-F442A preadipocytes was used to increase expression of Stra13, Stat3, and Stat5a. Only Stat5a transfection increased the expression of adipogenic markers peroxisome proliferator-activated receptor gamma, CCAAT enhancer binding protein (C/EBP)alpha, and adipose protein 2/fatty acid-binding protein in response to GH, as determined by quantitative RT-PCR. Transfection with constitutively active Stat3 and Stat5a revealed that constitutively active Stat5a but not Stat3 was able to replace the GH requirement for adipogenesis. Constitutively active Stat5a but not Stat3 was able to increase the formation of lipid droplets and expression of alpha-glycerol phosphate dehydrogenase toward levels seen in mature adipocytes. Constitutively active Stat5a was also able to increase the expression of transcripts for C/EBPalpha to similar levels as GH, and of C/EBPbeta, peroxisome proliferator-activated receptor gamma, and adipose protein 2/fatty acid-binding protein transcripts to a lesser extent. An in vivo role for GH in murine adipogenesis is supported by significantly decreased epididymal fat depot size in young GH receptor-deleted mice, before manifestation of the lipolytic actions of GH. We conclude that Stat5 is a critical factor in GH-induced, and potentially prolactin-induced, murine adipogenesis.
Resumo:
Hyperprolactinaemia during lactation is a consequence of the sucking stimulus and in part due to reduced prolactin (PRL) negative feedback. To date, the mechanisms involved in this diminished sensitivity to PRL feedback are unknown but may involve changes in PRL signal transduction within tuberoinfundibular dopaminergic (TIDA) neurons. Therefore, we investigated signal transducers and activators of transcription (STAT) 5 signaling in the TIDA neurons of lactating rats. Dual-label confocal immunofluorescence studies were used to determine the intracellular distribution of STAT5 within TIDA neurons in the dorsomedial arcuate nucleus. In lactating rats with pups removed for 16 h, injection of ovine PRL significantly (P < 0.05) increased the STAT5 nuclear/cytoplasmic ratio compared with vehicle-treated mothers. In contrast, ovine PRL injection did not increase the STAT5 nuclear/cytoplasmic ratio in lactating mothers with pups, demonstrating that PRL signal transduction through STAT5 is reduced in TIDA neurons in the presence of pups. To investigate possible mechanisms involved in reduced PRL signaling, we examined the expression of suppressors of cytokine signaling (SOCS) proteins. Northern analysis on whole hypothalamus showed that CIS (cytokine-inducible SH2 domain-containing protein), but not SOCS1 or SOCS3, mRNA expression was significantly (P < 0.01) up-regulated in suckled lactating rats. Semiquantitative RT-PCR on arcuate nucleus micropunches also showed up-regulation of CIS transcripts. Immunofluorescence studies demonstrated that CIS is expressed in all TIDA neurons in the dorsomedial arcuate nucleus, and the intensity of CIS staining in these neurons is significantly (P < 0.05) increased in lactating rats with sucking pups. Together, these results support the hypothesis that loss of sensitivity to PRL-negative feedback during lactation is a result of increased CIS expression in TIDA neurons.
Resumo:
It has been 75 years since Evans and Long identified a somatic growth-promoting substance in pituitary extracts, yet it is only in the last 20 years that the molecular basis for this action has been established. Three key elements in this elucidation were the cloning of the GH receptor, the identification of Janus kinase (JAK) 2 as the receptor-associated tyrosine kinase, and the delineation of signal transduction and activators of transcription (STAT) 5a/b as the key transcription factor(s) activated by JAK2. The interaction between these three elements results in enhanced postnatal growth and is the subject of this review. We describe a new model for GH receptor activation based on subunit rotation within a constitutive dimer, together with the phenotype and hepatic transcript profile of mice with targeted knockins to the receptor cytoplasmic domain. These support a central role for STAT5a/b in postnatal growth.
Resumo:
The ability of viral or mutated cellular oncogenes to initiate neoplastic events and their poor immunogenicity have considerably undermined their potential use as immunotherapeutic tools for the treatment of human cancers. Using an EpsteinBarr virus-encoded oncogene, latent membrane protein 1 (LMP1), as a model, we report a novel strategy that both deactivates cellular signaling pathways associated with the oncogenic phenotype and reverses poor immunogenicity. We show that cotranslational ubiquitination combined with Wend rule targeting of LMP1 enhanced the intracellular degradation of LMP1 and total blockade of LMP1-mediated nuclear factor-kappaB (NF-kappaB) and signal transducer and activator of transcription (STAT) activation in human cells. In addition, although murine cells expressing LMP1 were uniformly tumorigenic, this oncogenicity was completely abrogated by covalent linkage of LMP1 with ubiquitin, while an enhanced CD8(+) T cell response to a model epitope fused to the C-terminus of LMP1 was observed following immunization with ubiquitinated LMP1. These observations suggest that proteasomal targeting of tumor-associated oncogenes could be exploited therapeutically by either gene therapy or vaccination.
Resumo:
The GH receptor (GHR) is essential for normal postnatal growth and development, and the molecular basis of GHR action has been studied intensively. Clinical case studies and more recently mouse models have revealed the extensive phenotype of impaired GH action. We recently reported two new mouse models, possessing cytoplasmic truncations at position 569 (plus Y539/545-F) and 391, which were created to identify functional subdomains within the cytoplasmic signaling domain. In the homozygous state, these animals show progressively impaired postnatal growth coupled with complex changes in gene expression. We describe here an extended phenotype analysis encompassing the heterozygote state to identify whether single copies of these mutant receptors bring about partial or dominant-negative phenotypes. It appears that the retention of the ubiquitin-dependent endocytosis motif the N-terminal cytoplasmic domain permits turnover of these mutant receptors because no dominant-negative phenotype is seen. Nonetheless, we do observe partial impairment of postnatal growth in heterozygotes supporting limited haploinsufficiency. Reproductive function is impaired in these models in a progressive manner, in parallel with loss of signal transducer and activator of transcription-5 activation ability. In summary, we describe a more comprehensive phenotypic analysis of these mouse models, encompassing overall and longitudinal body growth, reproductive function, and hormonal status in both the heterozygote and homozygote state. Our results suggest that patients expressing single copies of similarly mutated GHRs would not display an obvious clinical phenotype.
Resumo:
The GH receptor (GHR) mediates metabolic and somatogenic actions of GH. Its extracellular domain (ECD; residues 1-246) has two subdomains, each with seven beta strands organized into two antiparallel beta sheets, connected by a short hinge region. Most of the ECD residues involved in GH binding reside in subdomain 1, whereas subdomain 2 harbors a dimerization interface between GHR dimers that alters conformation in response to GH. A regulated GHR metalloprotease cleavage site is in the membrane-proximal stem region of subdomain 2. We have identified a monoclonal anti-ECD antibody, anti-GHR(ext-mAb), which recognizes the rabbit and human GHRs by immunoprecipitation, but less so after GH treatment. By immunoblotting and immunoprecipitation, anti-GHR(ext-mAb) recognized a glutathione-S-transferase (GST) fusion incorporating subdomain 2, but not one including subdomain 1. In transient transfection experiments, anti-GHR(ext-mAb) failed to recognize by immunoprecipitation a previously characterized dimerization interface mutant GHR that is incompetent for signaling. In signaling experiments, brief pretreatment of GH-responsive human fibrosarcoma cells with anti-GHR(ext-mAb) dramatically inhibited GH-induced Janus kinase 2 and signal transducer and activator of transcription 5 tyrosine phosphorylation and prevented GH-induced GHR disulfide linkage (a reflection of GH-induced conformational changes). In contrast, anti-GHR(ext-mAb) only partially inhibited radiolabeled GH binding, suggesting its effects on signaling were not simply via inhibition of binding. Furthermore, anti-GHR(ext-mAb) prevented phorbol ester-stimulated GHR proteolysis, but GHR cleavage site mutants were normally recognized by the antibody, indicating that the stem region cleavage site is not a direct epitope. A Fab fragment of anti-GHR(ext-mAb) inhibited GH-induced GHR disulfide linkage and signaling, as well as phorbol ester-induced GHR proteolysis, in a fashion similar to the intact antibody. Thus, our findings suggest that anti-GHR(ext-mAb) has promise as a GH antagonist and as a tool in studies of conformational changes required for GHR activation.
Resumo:
Enhancement of oligodendrocyte survival through activation of leukemia inhibitory factor receptor (LIFR) signaling is a candidate therapeutic strategy for demyelinating disease. However, in other cell types, LIFR signaling is under tight negative regulation by the intracellular protein suppressor of cytokine signaling 3 (SOCS3). We, therefore, postulated that deletion of the SOCS3 gene in oligodendrocytes would promote the beneficial effects of LIFR signaling in limiting demyelination. By studying wild-type and LIF-knockout mice, we established that SOCS3 expression by oligodendrocytes was induced by the demyelinative insult, that this induction depended on LIF, and that enclogenously produced LIF was likely to be a key determinant of the CNS response to oligodendrocyte loss. Compared with wild-type controls, oligo-dendrocyte-specific SOCS3 conditional-knockout mice displayed enhanced c-fos activation and exogenous LIF-induced phosphorylation of signal transducer and activator of transcription 3. Moreover, these SOCS3-deficient mice were protected against cupri-zone-induced oligodendrocyte loss relative to wild-type animals. These results indicate that modulation of SOCS3 expression could facilitate the endogenous response to CNS injury.
Resumo:
Analysis of the structure of the urochordate Herdmania curvata ribosomal DNA intergenic spacer (IGS) and its role in transcription initiation and termination suggests that rRNA gene regulation in this chordate differs from that in vertebrates. A cloned H, curvata IGS is 1881 bp and composed predominantly of two classes of similar repeat sequences that largely alternate in a tandem array. Southern blot hybridization demonstrates that the IGS length variation within an individual and population is largely the result of changes in internal repeat number. Nuclease S1 mapping and primer extension analyses suggest that there are two transcription initiation sites at the 3' end of the most 3' repetitive element; these sites are 6 nucleotides apart. Unlike mouse, Xenopus, and Drosophila, there is no evidence of transcription starting elsewhere in the IGS. Most sequence differences between the promoter repeat and the other internal repeats are in the vicinity of the putative initiation sites. As in Drosophila, nuclease S1 mapping of transcription termination sites suggest that there is not a definitive stop site and a majority of the pre-rRNAs read through a substantial portion of the IGS. Some transcription appears to proceed completely through the promoter repeat into the adjacent rDNA unit. Analysis of oocyte RNA by reverse transcription-polymerase chain reaction (RT-PCR) confirms that readthrough transcription into the adjacent rDNA unit is occurring in some small IGS length variants; there is no evidence of complete readthrough of IGSs larger than 1.0 kb.
Resumo:
The cDNA sequence for insulin-like growth factor 2 (IGF-2) was determined from the liver of the marsupial brushtail possum (Trichosurus vulpecula) using reverse transcription followed by polymerase chain reaction (RT-PCR) with gene-specific primers. The 359 bp of possum sequence encompassed the mature peptide, 27 bp of the signal peptide, and 125 bp of the E-peptide. Alignment of the deduced amino acid sequence with those from other species indicated that the mature peptide was 71 amino acids in length, 4 amino acids longer than most other mammals. At both the nucleotide and amino acid levels there was a high degree of sequence identity with IGF-2 from other mammalian and nonmammalian species. Amino acid identity ranged from 94.4% with a variant form of human IGF-2 to 80.3% with zebrafinch IGF-2. Northern analysis revealed that radiolabeled possum IGF-2, cDNA hybridized to multiple transcripts in the liver of both adult possums and 150-day-old pouch young and that the overall level of expression was greater in pouch young. Semiquantitative RT-PCR with total RNA from liver samples of pouch young aged 12 to 150 days postpartum and adults confirmed that IGF-2 gene expression was two to three times more abundant in pouch young than in adults but there was no significant change in the level of expression during pouch life. Unlike other mammalian species, in which there is a decline in levels of liver IGF-2 gene expression around the time of birth, levels in the marsupial brushtail possum remain elevated for at least 150 days after birth. This suggests that the decline in liver IGF-2 expression in marsupials and eutherians occurs at a similar stage of development and may reflect a role for this growth factor during the postnatal growth and development of the marsupial, (C) 2001 Academic Press.
Resumo:
The complete sequence of the MCIR locus has been assembled, the coding region of the gene is intronless and placed within a 12 kb region flanked by the NULP1 and TUBB4 genes. The immediate promoter region has an E-box site with homology to the M-box consensus known to bind the microphthalmia transcription factor (MITF), however, promoter deletion analysis and transactivation studies have failed to show activation through this element by MITF. Polymorphism within the coding region, immediate 5' promoter region and a variable number tandem repeat (VNTR) minisatellite within the locus have been examined in a collection of Caucasian families and African individuals. Haplotype analysis shows linkage disequilibrium between the VNTR and MCIR coding region red hair variant alleles which can be used to estimate the age of these missense changes. Assuming a mean VNTR mutation rate of 1% and a star phylogeny, we estimate the Arg151Cys variant arose 7500 years before the present day, suggesting these variants may have arisen in the Caucasian population more recently than previously thought. (C) 2001 Published by Elsevier Science B.V.
Resumo:
Signal peptides and transmembrane helices both contain a stretch of hydrophobic amino acids. This common feature makes it difficult for signal peptide and transmembrane helix predictors to correctly assign identity to stretches of hydrophobic residues near the N-terminal methionine of a protein sequence. The inability to reliably distinguish between N-terminal transmembrane helix and signal peptide is an error with serious consequences for the prediction of protein secretory status or transmembrane topology. In this study, we report a new method for differentiating protein N-terminal signal peptides and transmembrane helices. Based on the sequence features extracted from hydrophobic regions (amino acid frequency, hydrophobicity, and the start position), we set up discriminant functions and examined them on non-redundant datasets with jackknife tests. This method can incorporate other signal peptide prediction methods and achieve higher prediction accuracy. For Gram-negative bacterial proteins, 95.7% of N-terminal signal peptides and transmembrane helices can be correctly predicted (coefficient 0.90). Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 99% (coefficient 0.92). For eukaryotic proteins, 94.2% of N-terminal signal peptides and transmembrane helices can be correctly predicted with coefficient 0.83. Given a sensitivity of 90%, transmembrane helices can be identified from signal peptides with a precision of 87% (coefficient 0.85). The method can be used to complement current transmembrane protein prediction and signal peptide prediction methods to improve their prediction accuracies. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Modulation of the cytochrome P450 (CYP) monooxygenase system by cadmium was investigated in male, adult DBA/2J mice treated with a single dose (16 mumol/kg body weight, i.p.) of cadmium chloride (CdCl2). Total CYP content of liver and kidney microsomes decreased maximally (56% and 85%, respectively) 24 and 18 h, respectively, after CdCl2 treatment. Progressive increases of hepatic coumarin 7-hydroxylase (COH) activity; indicative of CYP2A5 activity, relative to the total CYP content were seen at 8 h (2-fold), 12 h (3-fold), 18 h (12-fold), and 24 h (15-fold). Similar changes were seen in the kidney. Liver and kidney CYP2A5 mRNA levels increased maximally 12 and 4 h after treatment and decreased to almost half 6 h later. In contrast, kidney and liver CYP2A5 protein levels increased maximally at 18 and 24 h. The CYP2A5 mRNA levels in the kidney and liver increased after Cd treatment in Nrf2 +/+ but not in Nrf2 -/- mouse. This study demonstrates that hepatic and kidney CYP2A5 is upregulated by cadmium with a somewhat faster response in the kidney than the liver. The strong upregulation of the CYP2A5 both at mRNA and enzyme activity levels, with a simultaneous decrease in the total CYP concentration suggest an unusual mode of regulation of CYP2A5 in response to cadmium exposure, amongst the CYP enzymes. The observed decrease in the mRNA but not in protein levels after maximal induction may suggest involvement of post-trancriptional mechanisms in the regulation. Upregulation of CYP2A5 by cadmium in the Nrf2 +/+ mice but not in the Nrf2 -/- mice indicates a role for this transcription factor in the regulation. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The SOX family of transcription factors are found throughout the animal kingdom and are important in a variety of developmental contexts. Genome analysis has identified 20 Sox genes in human and mouse, which can be subdivided into 8 groups, based on sequence comparison and intron-exon structure. Most of the SOX groups identified in mammals are represented by a single SOX sequence in invertebrate model organisms, suggesting a duplication and divergence mechanism has operated during vertebrate evolution. We have now analysed the Sox gene complement in the pufferfish, Fugu rubripes, in order to shed further light on the diversity and origins of the Sox gene family. Major differences were found between the Sox family in Fugu and those in humans and mice. In particular, Fugu does not have orthologues of Sry, Sox,15 and Sox30, which appear to be specific to mammals, while Sox19, found in Fugu and zebrafish but absent in mammals, seems to be specific to fishes. Six mammalian Sox genes are represented by two copies each in Fugu, indicating a large-scale gene duplication in the fish lineage. These findings point to recent Sox gene loss, duplication and divergence occurring during the evolution of tetrapod and teleost lineages, and provide further evidence for large-scale segmental or a whole-genome duplication occurring early in the radiation of teleosts. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Recent findings relating to SOX transcription factors indicate that defects in organogenesis can be caused not only by impairment of the biochemical properties of transcription factors but also, in some cases, by deficient nuclear import. In addition, experimentally interfering with the nuclear export signals of some SOX factors has now been found to cause developmental defects. Controlling the balance of nuclear import and export might be a common means by which transcription factor activity can be regulated during development, and defects in these processes might underlie a broader spectrum of inherited developmental disorders.