5 resultados para Signal correlation

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This comment points out an inaccurate formula relating the signal correlation coefficient to the mutual impedance and corrects it. © 2005 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The performance of the maximum ratio combining method for the combining of antenna-diversity signals in correlated Rician-fading channels is rigorously studied. The distribution function of the normalized signal-to-noise ratio (SNR) is expanded in terms of a power series and calculated numerically. This power series can easily take into account the signal correlations and antenna gains and can be applied to any number of receiving antennas. An application of the method to dual-antenna diversity systems produces useful distribution curves for the normalized SNR which can be used to find the diversity gain. It is revealed that signal correlation in Rician-fading channels helps to increase the diversity gain rather than to decrease it as in the Rayleigh fading channels. It is also shown that with a relative strong direct signal component, the diversity gain can be much higher than that without a direct signal component.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A practical, small-size, dual-helical antenna array mounted on a mobile handset model is designed for use as diversity/MIMO receiving antennas. The array is rigorously studied with respect to its diversity performance and the achievable channel capacity. It is found that a very low correlation coefficient, a high diversity gain, an equal-mean branch SNR, and a relatively matched input impedance can be achieved at the same time. It is shown that, at a remarkably small antenna separation (similar to 0.05 lambda), the signal correlation can be reduced to nearly zero, an almost ideal independent operation of the diversity antennas. The increase in MIMO channel capacity is 100% over a single antenna system. Both measured and simulation results are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mating preferences are common in natural populations, and their divergence among populations is considered an important source of reproductive isolation during speciation. Although mechanisms for the divergence of mating preferences have received substantial theoretical treatment, complementary experimental tests are lacking. We conducted a laboratory evolution experiment, using the fruit fly Drosophila serrata, to explore the role of divergent selection between environments in the evolution of female mating preferences. Replicate populations of D. serrata were derived from a common ancestor and propagated in one of three resource environments: two novel environments and the ancestral laboratory environment. Adaptation to both novel environments involved changes in cuticular hydrocarbons, traits that predict mating success in these populations. Furthermore, female mating preferences for these cuticular hydrocarbons also diverged among populations. A component of this divergence occurred among treatment environments, accounting for at least 17.4% of the among- population divergence in linear mating preferences and 17.2% of the among-population divergence in nonlinear mating preferences. The divergence of mating preferences in correlation with environment is consistent with the classic by- product model of speciation in which premating isolation evolves as a side effect of divergent selection adapting populations to their different environments.