8 resultados para Signal Coherence Spectrum

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

All signals that appear to be periodic have some sort of variability from period to period regardless of how stable they appear to be in a data plot. A true sinusoidal time series is a deterministic function of time that never changes and thus has zero bandwidth around the sinusoid's frequency. A zero bandwidth is impossible in nature since all signals have some intrinsic variability over time. Deterministic sinusoids are used to model cycles as a mathematical convenience. Hinich [IEEE J. Oceanic Eng. 25 (2) (2000) 256-261] introduced a parametric statistical model, called the randomly modulated periodicity (RMP) that allows one to capture the intrinsic variability of a cycle. As with a deterministic periodic signal the RMP can have a number of harmonics. The likelihood ratio test for this model when the amplitudes and phases are known is given in [M.J. Hinich, Signal Processing 83 (2003) 1349-13521. A method for detecting a RMP whose amplitudes and phases are unknown random process plus a stationary noise process is addressed in this paper. The only assumption on the additive noise is that it has finite dependence and finite moments. Using simulations based on a simple RMP model we show a case where the new method can detect the signal when the signal is not detectable in a standard waterfall spectrograrn display. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is an emerging coherence-domain technique capable of in vivo imaging of sub-surface structures at millimeter-scale depth. Its steady progress over the last decade has been galvanized by a breakthrough detection concept, termed spectral-domain OCT, which has resulted in a dramatic improvement of the OCT signal-to-noise ratio of 150 times demonstrated for weakly scattering objects at video-frame-rates. As we have realized, however, an important OCT sub-system remains sub-optimal: the sample arm traditionally operates serially, i.e. in flying-spot mode. To realize the full-field image acquisition, a Fourier holography system illuminated with a swept-source is employed instead of a Michelson interferometer commonly used in OCT. The proposed technique, termed Fourier-domain OCT, offers a new leap in signal-to-noise ratio improvement, as compared to flying-spot OCT systems, and represents the main thrust of this paper. Fourier-domain OCT is described, and its basic theoretical aspects, including the reconstruction algorithm, are discussed. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report a new approach in optical coherence tomography (OCT) called full-field Fourier-domain OCT (3F-OCT). A three-dimensional image of a sample is obtained by digital reconstruction of a three-dimensional data cube, acquired with a Fourier holography recording system, illuminated with a swept source. We present a theoretical and experimental study of the signal-to-noise ratio of the 3F-OCT approach versus serial image acquisition (flying-spot OCT) approach. (c) 2005 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the absorption and dispersion properties of a weak probe field monitoring a two-level atom driven by a trichromatic field. We calculate the steady-state linear susceptibility and find that the system can produce a number of multilevel coherence effects predicted for atoms composed of three and more energy levels. Although the atom has only one transition channel, the multilevel effects are possible because there are multichannel transitions between dressed states induced by the driving field. In particular, we show that the system can exhibit multiple electromagnetically induced transparency and can also produce a strong amplification at the central frequency which is not attributed to population inversion in both the atomic bare states and in the dressed atomic states. Moreover, we show that the absorption and dispersion of the probe field is sensitive to the initial relative phase of the components of the driving field. In addition, we show that the group velocity of the probe field can be controlled by changing the initial relative phases or frequencies of the driving fields and can also be varied from subluminal to superluminal. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study investigated theory of mind and central coherence abilities in adults with high-functioning autism (HFA) or Asperger syndrome (AS) using naturalistic tasks. Twenty adults with HTA/AS correctly answered significantly fewer theory of mind questions than 20 controls on a forced-choice response task. On a narrative task, there were no differences in the proportion of mental state words between the two groups, although the participants with HFA/AS were less inclined to provide explanations for characters' mental states. No between-group differences existed on the central coherence questions of the forced-choice response task, and the participants with HTA/AS included an equivalent proportion of explanations for non-mental state phenomena in their narratives as did controls. These results support the theory of mind deficit account of autism spectrum disorders, and suggest that difficulties in mental state attribution cannot be exclusively attributed to weak central coherence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Full-field Fourier-domain optical coherence tomography (3F-OCT) is a full-field version of spectraldomain/swept-source optical coherence tomography. A set of two-dimensional Fourier holograms is recorded at discrete wavenumbers spanning the swept-source tuning range. The resultant three-dimensional data cube contains comprehensive information on the three-dimensional morphological layout of the sample that can be reconstructed in software via three-dimensional discrete Fourier-transform. This method of recording of the OCT signal confers signal-to-noise ratio improvement in comparison with "flying-spot" time-domain OCT. The spatial resolution of the 3F-OCT reconstructed image, however, is degraded due to the presence of a phase cross-term, whose origin and effects are addressed in this paper. We present theoretical and experimental study of imaging performance of 3F-OCT, with particular emphasis on elimination of the deleterious effects of the phase cross-term.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper derives the performance union bound of space-time trellis codes in orthogonal frequency division multiplexing system (STTC-OFDM) over quasi-static frequency selective fading channels based on the distance spectrum technique. The distance spectrum is the enumeration of the codeword difference measures and their multiplicities by exhausted searching through all the possible error event paths. Exhaustive search approach can be used for low memory order STTC with small frame size. However with moderate memory order STTC and moderate frame size the computational cost of exhaustive search increases exponentially, and may become impractical for high memory order STTCs. This requires advanced computational techniques such as Genetic Algorithms (GAS). In this paper, a GA with sharing function method is used to locate the multiple solutions of the distance spectrum for high memory order STTCs. Simulation evaluates the performance union bound and the complexity comparison of non-GA aided and GA aided distance spectrum techniques. It shows that the union bound give a close performance measure at high signal-to-noise ratio (SNR). It also shows that GA sharing function method based distance spectrum technique requires much less computational time as compared with exhaustive search approach but with satisfactory accuracy.