4 resultados para Shrubs.
em University of Queensland eSpace - Australia
Resumo:
Soapberry bugs are worldwide seed predators of plants in the family Sapindaceae. Australian sapinds are diverse and widespread, consisting of about 200 native trees and shrubs. This flora also includes two introduced environmental weeds, plus cultivated lychee (Litchi chinensis Sonn.), longan (Dimocarpus longan Lour.) and rambutan (Nephelium lappaceum L.). Accordingly, Australian soapberry bugs may be significant in ecology, conservation and agriculture. Here we provide the first account of their ecology. We find five species of Leptocoris Hahn in Australia, and list sapinds that do and do not serve as reproductive hosts. From museum and field records we map the continental distributions of the insects and primary hosts. Frequency of occupation varies among host species, and the number of hosts varies among the insects. In addition, differences in body size and beak length are related to host use. For example, the long-beaked Leptocoris tagalicus Burmeister is highly polyphagous in eastern rainforests, where it occurs on at least 10 native and non-native hosts. It aggregates on hosts with immature fruit and commences feeding before fruits dehisce. Most of its continental range, however, matches that of a single dryland tree, Atalaya hemiglauca F. Muell., which has comparatively unprotected seeds. The taxon includes a smaller and shorter-beaked form that is closely associated with Atalaya, and appears to be taxonomically distinct. The other widespread soapberry bug is the endemic Leptocoris mitellatus Bergroth. It too is short-beaked, and colonises hosts phenologically later than L. tagalicus, as seeds become more accessible in open capsules. Continentally its distribution is more southerly and corresponds mainly to that of Alectryon oleifolius Desf. Among all host species, the non-native environmental weeds Cardiospermum L. and Koelreuteria Laxm. are most consistently attacked, principally by L. tagalicus. These recent host shifts have biocontrol implications. In contrast, the sapinds planted as fruit crops appear to be less frequently used at present and mainly by the longer-beaked species.
Resumo:
1. Management decisions regarding invasive plants often have to be made quickly and in the face of fragmentary knowledge of their population dynamics. However, recommendations are commonly made on the basis of only a restricted set of parameters. Without addressing uncertainty and variability in model parameters we risk ineffective management, resulting in wasted resources and an escalating problem if early chances to control spread are missed. 2. Using available data for Pinus nigra in ungrazed and grazed grassland and shrubland in New Zealand, we parameterized a stage-structured spread model to calculate invasion wave speed, population growth rate and their sensitivities and elasticities to population parameters. Uncertainty distributions of parameters were used with the model to generate confidence intervals (CI) about the model predictions. 3. Ungrazed grassland environments were most vulnerable to invasion and the highest elasticities and sensitivities of invasion speed were to long-distance dispersal parameters. However, there was overlap between the elasticity and sensitivity CI on juvenile survival, seedling establishment and long-distance dispersal parameters, indicating overlap in their effects on invasion speed. 4. While elasticity of invasion speed to long-distance dispersal was highest in shrubland environments, there was overlap with the CI of elasticity to juvenile survival. In shrubland invasion speed was most sensitive to the probability of establishment, especially when establishment was low. In the grazed environment elasticity and sensitivity of invasion speed to the severity of grazing were consistently highest. Management recommendations based on elasticities and sensitivities depend on the vulnerability of the habitat. 5. Synthesis and applications. Despite considerable uncertainty in demography and dispersal, robust management recommendations emerged from the model. Proportional or absolute reductions in long-distance dispersal, juvenile survival and seedling establishment parameters have the potential to reduce wave speed substantially. Plantations of wind-dispersed invasive conifers should not be sited on exposed sites vulnerable to long-distance dispersal events, and trees in these sites should be removed. Invasion speed can also be reduced by removing seedlings, establishing competitive shrubs and grazing. Incorporating uncertainty into the modelling process increases our confidence in the wide applicability of the management strategies recommended here.
Resumo:
Trees in plantations established for timber production are usually grown at a sufficiently high density that canopy closure occurs within a relatively short time after planting. The trees then shade and outcompete most herbs, shrubs or grasses growing at the site. The closer the spacing (i.e. the greater the density) the faster this will occur. Subsequently, as the trees grow larger, this between-species competition is replaced by within-species competition. If unmanaged, this competition can reduce the commercial productivity of the plantation. Thus, there are two management dilemmas. One is knowing the best initial planting density. The second is knowing how to management the subsequent between-tree competition in order to optimize overall plantation timber productivity. In this chapter we consider initial spacing and thinning for high value timber trees grown in single and mixed species plantations. From growth studies in stands of different ages recommendations are proposed for managing both types of plantations where the primary objective is timber production. It seems that many rainforest species will require more space to achieve optimal growth than most eucalypts and conifers. On the other hand many rainforest species do not have strong apical dominance. Care will be needed to balance these two attributes.