5 resultados para Short Tandem Repeats
em University of Queensland eSpace - Australia
Resumo:
We report genetic characterization of isochromosome 18p using a combination of cytogenetic and molecular genetic methods, including multiplex fluorescent PCR. The patient was referred for chorionic villus sampling (CVS) due to advanced maternal age and maternal anxiety. The placental karyotype was 47,XX,+mar, with the marker having the appearance of a small supernumerary isochromosome. Because differentiating between isochromosomes and other structural rearrangements is normally very difficult, a variety of genetic tests including fluorescence in situ hybridization (FISH), PCR, and multiplex fluorescent PCR were undertaken to determine chromosomal origin and copy number and, thus, allow accurate diagnosis of the corresponding syndrome. FISH determined that the marker chromosome contained chromosome 18 material. PCR of a variety of short tandem repeats (STRs) confirmed that there was at least one extra copy of the maternal 18p material. However, neither FISH nor PCR could accurately determine copy number. Multiplex fluorescent PCR (MF-PCR) of STRs simultaneously determined that: (1) the marker included 18p material; (2) the marker was maternal in origin; (3) allele copy number indicated tetrasomy; and (4) contamination of the sample could be ruled out. Results were also rapid with accurate diagnosis of the syndrome tetrasomy 18p possible within 5 hours.
Resumo:
Human social organization can deeply affect levels of genetic diversity. This fact implies that genetic information can be used to study social structures, which is the basis of ethnogenetics. Recently, methods have been developed to extract this information from genetic data gathered from subdivided populations that have gone through recent spatial expansions, which is typical of most human populations. Here, we perform a Bayesian analysis of mitochondrial and Y chromosome diversity in three matrilocal and three patrilocal groups from northern Thailand to infer the number of males and females arriving in these populations each generation and to estimate the age of their range expansion. We find that the number of male immigrants is 8 times smaller in patrilocal populations than in matrilocal populations, whereas women move 2.5 times more in patrilocal populations than in matrilocal populations. In addition to providing genetic quantification of sex-specific dispersal rates in human populations, we show that although men and women are exchanged at a similar rate between matrilocal populations, there are far fewer men than women moving into patrilocal populations. This finding is compatible with the hypothesis that men are strictly controlling male immigration and promoting female immigration in patrilocal populations and that immigration is much less regulated in matrilocal populations.
Resumo:
An analysis of the historic H1 subtype, H1-1, in eight legumes belonging to four genera of the tribe Vicieae (Pisum, Lathyrus, Lens, and Vicia), revealed an extended region consisting of the tandemly repeated AKPAAK motifs. We named this region the Regular zone (RZ). The AKPAAK motifs are organized into two blocks separated by a short (two or six amino acids) intervening sequence (IS). The distal block contains six AKPAAK motifs, while the number of repeats in the proximal block varies from six in V. faba to seven in the other species. In V. hirsuta, the first two repeated units of the proximal block are octapeptides AKAKPAAK. The apparent rate of synonymous substitutions in the blocks of RZ is much higher than in the rest of the gene. This can be explained by repeat shuffling within each block. In the C-domain of the orthologous H1 subtype froth Medicago truncatula (tribe Trifolieae), a region corresponding to the RZ of Vicieae species was found. It also consists of two blocks of AKPAAK motifs (four and three repeats in the proximal and distal blocks, respectively). These blocks are separated by a 20-amino acid IS. The first 20 amino acids of the Medicago RZ are not part of AKPAAK repeats. We hypothesise that the RZ has most probably evolved as a result of an expansion of AKPAAK repeats from two separate sites in the C-domain. This process started tens of millions of years ago and was most likely directed by positive selection.
Resumo:
One way to achieve the large sample sizes required for genetic studies of complex traits is to combine samples collected by different groups. It is not often clear, however, whether this practice is reasonable from a genetic perspective. To assess the comparability of samples from the Australian and the Netherlands twin studies, we estimated F,, (the proportion of total genetic variability attributable to genetic differences between cohorts) based on 359 short tandem repeat polymorphisms in 1068 individuals. IF,, was estimated to be 0.30% between the Australian and the Netherlands cohorts, a smaller value than between many European groups. We conclude that it is reasonable to combine the Australian and the Netherlands samples for joint genetic analyses.
Resumo:
Genes for peripheral tissue-restricted self-antigens are expressed in thymic and hematopoietic cells. In thymic medullary epithelial cells, self-antigen expression imposes selection on developing autoreactive T cells and regulates susceptibility to autoimmune disease in mouse models. Less is known about the role of self-antigen expression by hematopoietic cells. Here we demonstrate that one of the endocrine self-antigens expressed by human blood myeloid cells, proinsulin, is encoded by an RNA splice variant. The surface expression of immunoreactive proinsulin was significantly decreased after transfection of monocytes with small interfering RNA to proinsulin. Furthermore, analogous to proinsulin transcripts in the thymus, the abundance of the proinsulin RNA splice variant in blood cells corresponded with the length of the variable number of tandem repeats 5' of the proinsulin gene, known to be associated with type 1 diabetes susceptibility. Self-antigen expression by peripheral myeloid cells extends the umbrella of immunological self and, by analogy with the thymus, may be implicated in peripheral immune tolerance.