7 resultados para Shishkin mesh
em University of Queensland eSpace - Australia
Resumo:
To study the biocompatibility of surgical meshes for use in pelvic reconstructive surgery using an animal model. Eight different types of mesh: Atrium, Dexon, Gynemesh, IVS tape, Prolene, SPARC tape, TVT tape and Vypro II, were implanted into the abdominal walls of rats for 3 months' duration. Explanted meshes were assessed, using light microscopy, for parameters of rejection and incorporation. Type 1 (Atrium, Gynemesh, Prolene, SPARC and TVT) and type 3 (Vypro II, Dexon and IVS) meshes demonstrated different biocompatible properties. Inflammatory cellular response and fibrosis at the interface of mesh and host tissue was most marked with Vypro II and IVS. All type 1 meshes displayed similar cellular responses despite markedly different mesh architecture. The inflammatory response and fibrous reaction in the non-absorbable type 3 meshes tested (IVS and Vypro II) was more marked than the type 1 meshes. The increased inflammatory and fibrotic response may be because of the multifilamentous polypropylene components of these meshes. Material and filament composition of mesh is the main factor in determining cellular response.
Resumo:
Terrain can be approximated by a triangular mesh consisting millions of 3D points. Multiresolution triangular mesh (MTM) structures are designed to support applications that use terrain data at variable levels of detail (LOD). Typically, an MTM adopts a tree structure where a parent node represents a lower-resolution approximation of its descendants. Given a region of interest (ROI) and a LOD, the process of retrieving the required terrain data from the database is to traverse the MTM tree from the root to reach all the nodes satisfying the ROI and LOD conditions. This process, while being commonly used for multiresolution terrain visualization, is inefficient as either a large number of sequential I/O operations or fetching a large amount of extraneous data is incurred. Various spatial indexes have been proposed in the past to address this problem, however level-by-level tree traversal remains a common practice in order to obtain topological information among the retrieved terrain data. A new MTM data structure called direct mesh is proposed. We demonstrate that with direct mesh the amount of data retrieval can be substantially reduced. Comparing with existing MTM indexing methods, a significant performance improvement has been observed for real-life terrain data.
Resumo:
Wireless Mesh Networks (WMNs), based on commodity hardware, present a promising technology for a wide range of applications due to their self-configuring and self-healing capabilities, as well as their low equipment and deployment costs. One of the key challenges that WMN technology faces is the limited capacity and scalability due to co-channel interference, which is typical for multi-hop wireless networks. A simple and relatively low-cost approach to address this problem is the use of multiple wireless network interfaces (radios) per node. Operating the radios on distinct orthogonal channels permits effective use of the frequency spectrum, thereby, reducing interference and contention. In this paper, we evaluate the performance of the multi-radio Ad-hoc On-demand Distance Vector (AODV) routing protocol with a specific focus on hybrid WMNs. Our simulation results show that under high mobility and traffic load conditions, multi-radio AODV offers superior performance as compared to its single-radio counterpart. We believe that multi-radio AODV is a promising candidate for WMNs, which need to service a large number of mobile clients with low latency and high bandwidth requirements.