18 resultados para Sheeps - Genetic parameters
em University of Queensland eSpace - Australia
Resumo:
Genetic parameters for performance traits in a pig population were estimated using a multi-trait derivative-free REML algorithm. The 2590 total data included 922 restrictively fed male and 1668 ad libitum fed female records. Estimates of heritability (standard error in parentheses) were 0.25 (0.03), 0.15 (0.03), and 0.30 (0.05) for lifetime daily gain, test daily gain, and P2-fat depth in males, respectively; and 0.27 (0.04) and 0.38 (0.05) for average daily gain and P2-fat depth in females, respectively. The genetic correlation between P2-fat depth and test daily gain in males was -0.17 (0.06) and between P2-fat and lifetime average daily gain in females 0.44 (0.09). Genetic correlations between sexes were 0.71 (0.11) for average daily gain and -0.30 (0.10) for P2-fat depth. Genetic response per standard deviation of selection on an index combining all traits was predicted at $AU120 per sow per year. Responses in daily gain and backfat were expected to be higher when using only male selection than when using only female selection. Selection for growth rate in males will improve growth rate and carcass leanness simultaneously.
Resumo:
The role of physiological understanding in improving the efficiency of breeding programs is examined largely from the perspective of conventional breeding programs. Impact of physiological research to date on breeding programs, and the nature of that research, was assessed from (i) responses to a questionnaire distributed to plant breeders and physiologists, and (ii) a survey of literature abstracts. Ways to better utilise physiological understanding for improving breeding programs are suggested, together with possible constraints to delivering beneficial outcomes. Responses from the questionnaire indicated a general view that the contribution by crop physiology to date has been modest. However, most of those surveyed expected the contribution to be larger in the next 20 years. Some constraints to progress perceived by breeders and physiologists were highlighted. The survey of literature abstracts indicated that from a plant breeding perspective, much physiological research is not progressing further than making suggestions about possible approaches to selection. There was limited evidence in the literature of objective comparison of such suggestions with existing methodology, or of development and application of these within active breeding programs. It is argued in this paper that the development of outputs from physiological research for breeding requires a good understanding of the breeding program(s) being serviced and factors affecting its performance. Simple quantitative genetic models, or at least the ideas they represent, should be considered in conducting physiological research and in envisaging and evaluating outputs. The key steps of a generalised breeding program are outlined, and the potential pathways for physiological understanding to impact on these steps are discussed. Impact on breeding programs may arise through (i) better choice of environments in which to conduct selection trials, (ii) identification of selection criteria and traits for focused introgression programs, and (iii) identifying traits for indirect selection criteria as an adjunct to criteria already used. While many breeders and physiologists apparently recognise that physiological understanding may have a major role in the first area, there appears to be relatively Little research activity targeting this issue, and a corresponding bias, arguably unjustified, toward examining traits for indirect selection. Furthermore, research on traits aimed at crop improvement is often deficient because key genetic parameters, such as genetic variation in relevant breeding populations and genetic (as opposed to phenotypic) correlations with yield or other characters of economic importance, are not properly considered in the research. Some areas requiring special attention for successfully interfacing physiology research with breeding are discussed. These include (i) the need to work with relevant genetic populations, (ii) close integration of the physiological research with an active breeding program, and (iii) the dangers of a pre-defined or narrow focus in the physiological research.
Resumo:
There have been few replicated examples of genotype x environment interaction effects on behavioral variation or risk of psychiatric disorder. We review some of the factors that have made detection of genotype x environment interaction effects difficult, and show how genotype x shared environment interaction (GxSE) effects are commonly confounded with genetic parameters in data from twin pairs reared together. Historic data on twin pairs reared apart can in principle be used to estimate such GxSE effects, but have rarely been used for this purpose. We illustrate this using previously published data from the Swedish Adoption Twin Study of Aging (SATSA), which suggest that GxSE effects could account for as much as 25% of the total variance in risk of becoming a regular smoker. Since few separated twin pairs will be available for study in the future, we also consider methods for modifying variance components linkage analysis to allow for environmental interactions with linked loci.
Resumo:
The spatial and breeding dynamics of koalas in sub-tropical woodlands at Blair Athol in central Queensland were intensively monitored between 1993 and 1998. Genetic relationships among koalas at this locality were studied to determine the breeding dynamics of males, including whether 'resident' or 'transient' males dominate as sires. Males and females were radio-collared and tracked periodically throughout each year of the study. Genotypes from hypervariable microsatellite loci identified uniquely all individuals and were used to analyse parentage as well as to determine population genetic parameters when compared with other regional localities. Koalas at Blair Athol comprise a population in genetic equilibrium. Gene diversity estimates show the population to be similar to other populations found in similar habitat in the region, and estimates of genetic differentiation among four regional populations showed that gene flow conforms to a model of isolation by distance. Analysis of parentage found that both resident and transient males sired about equal numbers of offspring. Familial DNA analysis revealed multiple paternities of successive young in this population. The conclusion from this study is that 'resident' status among males does not confer any advantage for parentage.
Resumo:
A major challenge faced by today's white clover breeder is how to manage resources within a breeding program. It is essential to utilise these resources with sufficient flexibility to build on past progress from conventional breeding strategies, but also take advantage of emerging opportunities from molecular breeding tools such as molecular markers and transformation. It is timely to review white clover breeding strategies. This background can then be used as a foundation for considering how to continue conventional plant improvement activities and complement them with molecular breeding opportunities. In this review, conventional white clover breeding strategies relevant to the Australian dryland target population environments are considered. Attention is given to: (i) availability of genetic variation, (ii) characterisation of germplasm collections, (iii) quantitative models for estimation of heritability, (iv) the role of multi-environment trials to accommodate genotype-by-environment interactions, (v) interdisciplinary research to understand adaptation to dryland environments, (vi) breeding and selection strategies, and (vii) cultivar structure. Current achievements in biotechnology with specific reference to white clover breeding in Australia are considered, and computer modelling of breeding programs is discussed as a useful integrative tool for the joint evaluation of conventional and molecular breeding strategies and optimisation of resource use in breeding programs. Four areas are identified as future research priorities: (i) capturing the potential genetic diversity among introduced accessions and ecotypes that are adapted to key constraints such as summer moisture stress and the use of molecular markers to assess the genetic diversity, (ii) understanding the underlying physiological/morphological root and shoot mechanisms involved in water use efficiency of white clover, with the objective of identifying appropriate selection criteria, (iii) estimation of quantitative genetic parameters of important morphological/physiological attributes to enable prediction of response to selection in target environments, and (iv) modelling white clover breeding strategies to evaluate the opportunities for integration of molecular breeding strategies with conventional breeding programs.
Resumo:
A generic method for the estimation of parameters for Stochastic Ordinary Differential Equations (SODEs) is introduced and developed. This algorithm, called the GePERs method, utilises a genetic optimisation algorithm to minimise a stochastic objective function based on the Kolmogorov-Smirnov statistic. Numerical simulations are utilised to form the KS statistic. Further, the examination of some of the factors that improve the precision of the estimates is conducted. This method is used to estimate parameters of diffusion equations and jump-diffusion equations. It is also applied to the problem of model selection for the Queensland electricity market. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Support vector machines (SVMs) have recently emerged as a powerful technique for solving problems in pattern classification and regression. Best performance is obtained from the SVM its parameters have their values optimally set. In practice, good parameter settings are usually obtained by a lengthy process of trial and error. This paper describes the use of genetic algorithm to evolve these parameter settings for an application in mobile robotics.
Resumo:
Power system small signal stability analysis aims to explore different small signal stability conditions and controls, namely: (1) exploring the power system security domains and boundaries in the space of power system parameters of interest, including load flow feasibility, saddle node and Hopf bifurcation ones; (2) finding the maximum and minimum damping conditions; and (3) determining control actions to provide and increase small signal stability. These problems are presented in this paper as different modifications of a general optimization to a minimum/maximum, depending on the initial guesses of variables and numerical methods used. In the considered problems, all the extreme points are of interest. Additionally, there are difficulties with finding the derivatives of the objective functions with respect to parameters. Numerical computations of derivatives in traditional optimization procedures are time consuming. In this paper, we propose a new black-box genetic optimization technique for comprehensive small signal stability analysis, which can effectively cope with highly nonlinear objective functions with multiple minima and maxima, and derivatives that can not be expressed analytically. The optimization result can then be used to provide such important information such as system optimal control decision making, assessment of the maximum network's transmission capacity, etc. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
We propose a simulated-annealing-based genetic algorithm for solving model parameter estimation problems. The algorithm incorporates advantages of both genetic algorithms and simulated annealing. Tests on computer-generated synthetic data that closely resemble optical constants of a metal were performed to compare the efficiency of plain genetic algorithms against the simulated-annealing-based genetic algorithms. These tests assess the ability of the algorithms to and the global minimum and the accuracy of values obtained for model parameters. Finally, the algorithm with the best performance is used to fit the model dielectric function to data for platinum and aluminum. (C) 1997 Optical Society of America.
Resumo:
The concept of parameter-space size adjustment is pn,posed in order to enable successful application of genetic algorithms to continuous optimization problems. Performance of genetic algorithms with six different combinations of selection and reproduction mechanisms, with and without parameter-space size adjustment, were severely tested on eleven multiminima test functions. An algorithm with the best performance was employed for the determination of the model parameters of the optical constants of Pt, Ni and Cr.
Resumo:
This report outlines the development of optimized particle inflow gun (PIG) parameters for producing transgenic sorghum (Sorghum bicolor (L.) Moench). Both transient and stable expression were examined when determining these parameters. The uidA reporter gene (GUS) encoding beta -glucuronidase was used in transient experiments and the green fluorescent protein (GFP) used to monitor stable expression. Initially, optimization was conducted using leaf segments, as the generation of sorghum callus in sufficiently large quantities is time-consuming. Following leaf optimization, experiments were conducted using callus, identifying a high similarity between the two tissue types (r(s) = 0.83). High levels of GUS expression were observed in both leaf and callus material when most distant from the DNA expulsion point, and using a pressure greater than 1800 kPa. A higher level of expression was also observed when the aperture of the helium inlet valve was constricted. Using the optimized conditions (pressure of 2200 kPa, distance to target tissue of 15 cm from the expulsion point, and the aperture of the helium inlet valve at one full turn), three promoters (Ubiquitin, Actin1 and CaMV 35S) were evaluated over a 72-h period using GUS as the reporter gene. A significantly higher number of GUS foci were counted with the Ubiquitin construct over this period, compared to the Actin1 and CaMV 35S constructs. Stable callus sectors (on 2 mg l(-1) bialaphos) with GFP expression were visualized for as long as 6 wk post-bombardment. Using this optimized protocol, several plants were regenerated after having been bombarded with the pAHC20 construct (containing the bar gene), with molecular evidence confirming integration.
Resumo:
Genetic research on risk of alcohol, tobacco or drug dependence must make allowance for the partial overlap of risk-factors for initiation of use, and risk-factors for dependence or other outcomes in users. Except in the extreme cases where genetic and environmental risk-factors for initiation and dependence overlap completely or are uncorrelated, there is no consensus about how best to estimate the magnitude of genetic or environmental correlations between Initiation and Dependence in twin and family data. We explore by computer simulation the biases to estimates of genetic and environmental parameters caused by model misspecification when Initiation can only be defined as a binary variable. For plausible simulated parameter values, the two-stage genetic models that we consider yield estimates of genetic and environmental variances for Dependence that, although biased, are not very discrepant from the true values. However, estimates of genetic (or environmental) correlations between Initiation and Dependence may be seriously biased, and may differ markedly under different two-stage models. Such estimates may have little credibility unless external data favor selection of one particular model. These problems can be avoided if Initiation can be assessed as a multiple-category variable (e.g. never versus early-onset versus later onset user), with at least two categories measurable in users at risk for dependence. Under these conditions, under certain distributional assumptions., recovery of simulated genetic and environmental correlations becomes possible, Illustrative application of the model to Australian twin data on smoking confirmed substantial heritability of smoking persistence (42%) with minimal overlap with genetic influences on initiation.
Resumo:
The phenotypic and genetic factor structure of performance on five Multidimensional Aptitude Battery (MAB) subtests and one Wechsler Adult Intelligence Scale-Revised (WAIS-R) subtest was explored in 390 adolescent twin pairs (184 monozygotic [MZ]; 206 dizygotic (DZ)). The temporal stability of these measures was derived from a subsample of 49 twin pairs, with test-retest correlations ranging from .67 to .85. A phenotypic factor model, in which performance and verbal factors were correlated, provided a good fit to the data. Genetic modeling was based on the phenotypic factor structure, but also took into account the additive genetic (A), common environmental (C), and unique environmental (E) parameters derived from a fully saturated ACE model. The best fitting model was characterized by a genetic correlated two-factor structure with specific effects, a general common environmental factor, and overlapping unique environmental effects. Results are compared to multivariate genetic models reported in children and adults, with the most notable difference being the growing importance of common genes influencing diverse abilities in adolescence. (C) 2003 Elsevier Inc. All rights reserved.