3 resultados para Serratia-plymuthica
em University of Queensland eSpace - Australia
Resumo:
Aims: Isolation, identification and characterization of a highly efficient isomaltulose producer. Methods and Results: After an enrichment procedure for bacteria likely to metabolize isomaltulose in sucrose-rich environments, 578 isolates were screened for efficient isomaltulose biosynthesis using an aniline/diphenylamine assay and capillary electrophoresis. An isolate designated UQ68J was exceptionally efficient in sucrose isomerase activity. Conversion of sucrose into isomaltulose by UQ68J (enzyme activity of 90-100 U mg(-1) DW) was much faster than the current industrial strain Protaminobacter rubrum CBS574.77 (41-66 U mg(-1) DW) or a reference strain of Erwinia rhapontici (0.3-0.9 U mg(-1) DW). Maximum yield of isomaltulose at 78-80% of supplied sucrose was achieved in less than half the reaction time needed by CBS574.77, and the amount of contaminating trehalulose (4%) was the lowest recorded from an isomaltulose-producing microbe. UQ68J is a Gram negative, facultatively anaerobic, motile, noncapsulate, straight rod-shaped bacterium producing acid but no gas from glucose. Based on 16S rDNA analysis UQ68J is closest to Klebsiella oxytoca, but it differs from Klebsiella in defining characteristics and most closely resembles Pantoea dispersa in phenotype. Significance and Impact of Study: This organism is likely to have substantial advantage over previously characterized sucrose isomerase producers for the industrial production of isomaltulose.
Resumo:
Sucrose isomerase (SI) genes from Pantoea dispersa UQ68J, Klebsiella planticola UQ14S, and Erwinia rhapontici WAC2928 were cloned and expressed in Escherichia coli. The predicted products of the UQ14S and WAC2928 genes were similar to known SIs. The UQ68J SI differed substantially, and it showed the highest isomaltulose-producing efficiency in E. coli cells. The purified recombinant WAC2928 SI was unstable, whereas purified UQ68J and UQ14S SIs were very stable. UQ68J SI activity was optimal at pH 5 and 30 to 35 degrees C, and it produced a high ratio of isomaltulose to trehalulose (> 22:1) across its pH and temperature ranges for activity (pH 4 to 7 and 20 to 50 degrees C). In contrast, UQ14S SI showed optimal activity at pH 6 and 35 degrees C and produced a lower ratio of isomaltulose to trehalulose (< 8:1) across its pH and temperature ranges for activity. UQ68J SI had much higher catalytic efficiency; the K-m was 39.9 mM, the V-max was 638 U mg(-1), and the K-cat/K-m was 1.79 x 104 M-1 s(-1), compared to a K-m of 76.0 mM, a V-max. of 423 U mg(-1), and a K-cat/K-m of 0.62 x 104 M-1 s(-1) for UQ14S SI. UQ68J SI also showed no apparent reverse reaction producing glucose, fructose, or trehalulose from isomaltulose. These properties of the P. dispersa UQ68J enzyme are exceptional among purified SIs, and they indicate likely differences in the mechanism at the enzyme active site. They may favor the production of isomaltulose as an inhibitor of competing microbes in high-sucrose environments, and they are likely to be highly beneficial for industrial production of isomaltulose.
Resumo:
Functional interaction between bacterial surface-displayed autoaggregation proteins such as antigen 43 (Ag43) of Escherichia coli and motility organelles such as flagella has not previously been described. Here, it has been demonstrated for the first time that Ag43-mediated aggregation can inhibit bacterial motility. Ag43 overexpression produces a dominant aggregation phenotype that overrides motility in the presence of low levels of flagella. In contrast, induction of an increased flagellation state prevents Ag43-mediated aggregation. This phenomenon was observed in naturally occurring subpopulations of E coli as phase variants expressing and not expressing Ag43 revealed contrasting motility phenotypes. The effects were shown to be part of a general mechanism because other short adhesins capable of mediating autoaggregation (AIDA-I and TibA) also impaired motility. These novel insights into the function of bacterial autoaggregation proteins suggest that a balance between these two systems, i.e. autoaggregation and flagellation, influences motility.