55 resultados para Serotonin
em University of Queensland eSpace - Australia
Resumo:
Dysfunction in the serotonin (5-hydroxytryptamine) system and reduced serotonin concentrations have been reported in patients with Parkinson's disease (PD). Serotonin concentrations in neural tissue are controlled by a presynaptic serotonin transporter protein that is encoded by a single gene. Therefore, we investigated whether a polymorphic region in the serotonin transporter gene is associated with PD. Three variable-number tandem repeat (VNTR) elements of the serotonin transporter gene were detected by polymerase chain reaction, those with 9, 10, 11 and 12 copies of the repeat element. The 10-copy VNTR element was significantly less common in patients with PD than controls in the univariate analysis (p < 0.05). Logistic regression analysis revealed no significant differences between patients (n = 198) and controls (n = 200) in the distribution frequencies of 9-and 12-copy alleles and combined genotypes (odds ratio = 1.20; p = 1.71). A positive family history of PD was a strong predictor of disease risk (odds ratio = 2.98; 95% confidence interval 1.51-5.87; p = 0.001). Although slight differences were observed between patient and control groups, these data suggest that defects in serotonin concentrations in patients with PD are unlikely to be due to polymorphisms in the serotonin transporter gene in this large Australian cohort; however, the inverse association observed with the 10-copy allele warrants further investigation. Copyright (C) 2000 S. Karger AG, Basel.
Resumo:
Objective: To assess from a health sector perspective the incremental cost-effectiveness of cognitive behavioural therapy (CBT) and selective serotonin reuptake inhibitors (SSRIs) for the treatment of major depressive disorder (MDD) in children and adolescents, compared to 'current practice'. Method: The health benefit is measured as a reduction in disability-adjusted life years (DALYs), based on effect size calculations from meta-analysis of randomised controlled trials. An assessment on second stage filter criteria ('equity'; 'strength of evidence', 'feasibility' and 'acceptability to stakeholders') is also undertaken to incorporate additional factors that impact on resource allocation decisions. Costs and benefits are tracked for the duration of a new episode of MDD arising in eligible children (age 6-17 years) in the Australian population in the year 2000. Simulation-modelling techniques are used to present a 95% uncertainty interval (UI) around the cost-effectiveness ratios. Results: Compared to current practice, CBT by public psychologists is the most cost-effective intervention for MDD in children and adolescents at A$9000 per DALY saved (95% UI A$3900 to A$24 000). SSRIs and CBT by other providers are less cost-effective but likely to be less than A$50 000 per DALY saved (> 80% chance). CBT is more effective than SSRIs in children and adolescents, resulting in a greater total health benefit (DALYs saved) than could be achieved with SSRIs. Issues that require attention for the CBT intervention include equity concerns, ensuring an adequate workforce, funding arrangements and acceptability to various stakeholders. Conclusions: Cognitive behavioural therapy provided by a public psychologist is the most effective and cost-effective option for the first-line treatment of MDD in children and adolescents. However, this option is not currently accessible by all patients and will require change in policy to allow more widespread uptake. It will also require 'start-up' costs and attention to ensuring an adequate workforce.
Resumo:
Between 1085 and 1927, epidemics of convulsive ergotism were widespread east of the Rhine in Europe due to consumption of grain contaminated with ergot, which is produced by the fungus Claviceps purpurea. West of the Rhine, consumption of ergot-contaminated food caused epidemics of gangrenous ergotism. The clinical features of convulsive ergotism-muscle twitching and spasms, changes in mental state, hallucinations, sweating, and fever lasting for several weeks-suggest serotonergic overstimulation of the CNS (ie, the serotonin syndrome). The ergot alkaloids are serotonin agonists. Dihydroergotamine binds to serotonin receptors in the dorsal horn of the spinal cord, which is the site of neuropathological changes in convulsive ergotism. Dihydroergotamine given to human beings can cause the serotonin syndrome. Ergots produced by different strains of Claviceps purpurea, and those growing in different soils, may have different ergot alkaloid compositions. An alkaloid, present in high concentrations in ergots from east of the Rhine, may have caused convulsive ergotism at a circulating concentration insufficient to produce peripheral ischaemia. The serotonin syndrome may, therefore, have been a public-health problem long before it was recognised as a complication of modem psychopharmacology.
Resumo:
We present evidence of complex balancing regulation of HTR1B transcription by common polymorphisms in its promoter. Computational analysis of the HTR1B gene predicted that a 50 segment, spanning common DNA sequence variations, T-261G, A-161T, and -182INS/DEL-181, contained a putative functional promoter. Using a secreted alkaline phosphatase (SEAP) reporter gene system, we found that the haplotype -261G_-182INS-181_A-161 enhanced transcriptional activity 2.3-fold compared with the haplotype T-261_-182INS-181_A-161. Conversely, -161T reversed this, and the net effect when -261G and -161T were in the same haplotype (-261G_-182INS-181_-161T) was equivalent to the major haplotype (T-261_-182INS-181_A-161). Electrophoretic mobility shift experiments showed that -261G and -161T modify the binding of transcription factors (TFs): -261G generates a new AP2 binding site, while alleles A-161 and -161T exhibit different binding characteristics to AP1. T-261G and A-161T were found to be in linkage disequilibrium (LD) with G861C in a European ancestry population. Interestingly, G861C has been reported to be associated with several psychiatric disorders. Our results indicate that HTR1B is the target of substantial transcriptional genetic regulation by common haplotypes, which are in LD with the HTR1B single-nucleotide polymorphism (SNP) most commonly used in association studies.
Resumo:
Serotonin (5-hydroxytryptamine, 5-HT) increases contractile force and elicits arrhythmias through 5-HT4 receptors in porcine and human atrium, but its ventricular effects are unknown. We now report functional 5-HT4 receptors in porcine and human ventricle. 5-HT4 mRNA levels were determined in porcine and human ventricles and contractility studied in ventricular trabeculae. Cyclic AMP-dependent protein kinase (PKA) activity was measured in porcine ventricle. Porcine and human ventricles expressed 5-HT4 receptor mRNA. Ventricular 5-HT4(b) mRNA was increased by four times in 20 failing human hearts compared with five donor hearts. 5-HT increased contractile force maximally by 16% (EC50=890 nM) and PKA activity by 20% of the effects of (-)-isoproterenol (200 muM) in ventricular trabeculae from new-born piglets in the presence of the phosphodiesterase-inhibitor 3-isobutyl-1-methylxanthine. In ventricular trabeculae from adult pigs (3-isobutyl-1-methylxanthine present) 5-HT increased force by 32% (EC50=60 nM) and PKA activity by 39% of (-)-iso-proterenol. In right and left ventricular trabeculae from failing hearts, exposed to modified Krebs solution, 5-HT produced variable increases in contractile force in right ventricular trabeculae from 4 out of 6 hearts and in left ventricular trabeculae from 3 out of 3 hearts- range 1-39% of (-)-isoproterenol, average 8%. In 11 left ventricular trabeculae from the failing hearts of four beta-blocker-treated patients, pre-exposed to a relaxant solution with 0.5 mM Ca2+ and 1.2 mM Mg2+ followed by a switch to 2.5 mM Ca2+ and 1 mM Mg2+, 5-HT (1-100 muM, 3-isobutyl-1-melhylxanthine present) consistently increased contractile force and hastened relaxation by 46% and 25% of (-)-isoproterenol respectively. 5-HT caused arrhythmias in three trabeculae from 3 out of I I patients. In the absence of phosphodiesterase inhibitor, 5-HT increased force in two trabeculae, but not in another six trabeculae from 4 patients. All 5-HT responses were blocked by 5-HT4 receptor antagonists. We conclude that phosphodiesterase inhibition uncovers functional ventricular 5-HT4 receptors, coupled to a PKA pathway, through which 5-HT enhances contractility, hastens relaxation and can potentially cause arrhythmias.
Resumo:
Increasing evidence suggests a link between attention, working memory, serotonin (5-HT), and prefrontal cortex activity. In an attempt to tease out the relationship between these elements, this study tested the effects of the hallucinogenic mixed 5-HT1A/2A receptor agonist psilocybin alone and after pretreatment with the 5-HT2A antagonist ketanserin. Eight healthy human volunteers were rested on a multiple-object tracking task and spatial working memory task under the four conditions: placebo, psilocybin (215 mu g/kg), ketanserin (50 mg), and psilocybin and ketanserin. Psilocybin significantly reduced attentional tracking ability, but had no significant effect on spatial working memory, suggesting a functional dissociation between the two tasks. Pretreatment with ketanserin did not attenuate the effect of psilocybin on attentional performance, suggestinga primary involvement of the 5-HT1A receptor in the observed defecit. Based on physiological and pharmacological data,we speculate that this impaired attentional performance may reflect a reduced ability to suppress or ignore distracting stimuli rather than reduced attentional capacity. The clinical relevance of these results is also discussed.
Resumo:
Serotonin (5-hydroxytryptamine, 5-HT) is an amine neurotransmitter derived from tryptophan and is important in brain systems regulating mood, emotional behavior, and sleep. Selective serotonin reuptake inhibitor (SSRI) drugs are used to treat disorders such as depression, stress, eating disorders, autism, and schizophrenia. It is thought that these drugs act to prolong the action of 5-HT by blocking reuptake. This may lead to decreased 5-HT content in the nerve fibers themselves; however, this has not previously been directly demonstrated. We have studied the effects of administration of two drugs, imipramine and citalopram, on levels of 5-HT in nerve fibers in the murine brain. Quantitative analysis of the areal density of 5-HT fibers throughout the brain was performed using ImageJ software. While a high density of fibers was observed in mid- and hind-brain regions and areas such as thalamus and hypothalamus, densities were far lower in areas such as cortex, where SSRIs might be thought to exert their actions. As anticipated, imipramine and citalopram produced a decline in 5-HT levels in nerve fibers, but the result was not uniform. Areas such as inferior colliculus showed significant reduction whereas little, if any, change was observed in the adjacent superior colliculus. The reason for, and significance of, this regionality is unclear. It has been proposed that serotonin effects in the brain might be linked to changes in glutamatergic transmission. Extracellular glutamate levels are regulated primarily by glial glutamate transporters. Qualitative evaluation of glutamate transporter immunolabeling in cortex of control and drug-treated mice revealed no discernable difference in intensity of glutamate transporter immunoreactivity. These data suggest that changes in intracellular and extracellular levels of serotonin do not cause concomitant changes in astroglial glutamate transporter expression, and thus cannot represent a mechanism for the delayed efficacy of antidepressants when administered clinically. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Myopia (short-sightedness) is a visual problem associated with excessive eye growth and vitreous chamber expansion. Within the eye serotonin (5-hydroxytryptamine, 5-HT) appears to have a variety of effects, it alters retinal amacrine cell processing, increases intraocular pressure, constricts ocular blood vessels, and is also mitogenic. This study sought to determine the role of the retinal serotonin system in eye growth regulation. Myopia was produced in 7-day-old chicks using -15 D spectacle lenses (LIM) and form deprivation (FDM). The effect on LIM and FDM of daily intravitreal injections of a combination of 5-HT receptor antagonists (1, 10, 50 mu M), 5-HT2 selective antagonist (Mianserin 0.5, 20 mu M) were assessed. Counts were performed of serotonin and tyrosine hydroxylase positive neurons and the relative density used to account for areal changes due to eye growth. The effect of LIM and lens-induced hyperopia (LIH) on the numbers of 5-HT-containing amacrine cells in the retina were then determined. The combination of the 5-HT receptor antagonists inhibited LIM by approximately half (1 mu M RE: -7.12 +/- 1.0 D, AL: 0.38 +/- 0.06 mm vs. saline RE: -13.19 +/- 0.65 D, AL: 0.64 +/- 0.03 mm. RE: p < 0.01, AL: p < 0.01), whereas FDM was not affected (1 mu M RE: -8.88 +/- 1.10 D). These data suggest that serotonin has a stimulatory role in LIM, although high doses of serotonin were inhibitory (1 mu M RE: -9.30 +/- 1.34 D). 5-HT immunoreactivity was localised to a subset of amacrine cell bodies in the inner nuclear layer of the retina, and to two synaptic strata in the inner plexiform layer. LIM eyes had increased numbers of 5-HT-containing amacrine cells in the central retina (12.5%). Collectively, these results suggest that manipulations to the serotonin system can alter the eye growth process but the role of the transmitter system within this process remains unclear. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Simultaneous measurements of pulmonary blood flow (qPA), coeliacomesenteric blood flow (qCoA), dorsal aortic blood pressure (PDA), heart rate (fH) and branchial ventilation frequency (fv) were made in the Australian lungfish, /Neoceratodus forsteri, /during air breathing and aquatic hypoxia. The cholinergic and adrenergic influences on the cardiovascular system were investigated during normoxia using pharmacological agents, and the presence of catecholamines and serotonin in different tissues was investigated using histochemistry. Air breathing rarely occurred during normoxia but when it did, it was always associated with increased pulmonary blood flow. The pulmonary vasculature is influenced by both a cholinergic and adrenergic tonus whereas the coeliacomesenteric vasculature is influenced by a β-adrenergic vasodilator mechanism. No adrenergic nerve fibers could be demonstrated in /Neoceratodus /but catecholamine-containing endothelial cells were found in the atrium of the heart. In addition, serotonin-immunoreactive cells were demonstrated in the pulmonary epithelium. The most prominent response to aquatic hypoxia was an increase in gill breathing frequency followed by an increased number of air breaths together with increased pulmonary blood flow. It is clear from the present investigation that /Neoceratodus /is able to match cardiovascular performance to meet the changes in respiration during hypoxia.