17 resultados para Sensory system

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many authors report changes in the control of the trunk muscles in people with low back pain (LBP). Although there is considerable disagreement regarding the nature of these changes, we have consistently found differential effects on the deep intrinsic and superficial muscles of the lumbopelvic region. Two issues require consideration; first, the potential mechanisms for these changes in control, and secondly, the effect or outcome of changes in control for lumbopelvic function. Recent data indicate that experimentally induced pain may replicate some of the changes identified in people with LBP. While this does not exclude the possibility that changes in control of the trunk muscles may lead to pain, it does argue that, at least in some cases, pain may cause the changes in control. There are many possible mechanisms, including changes in excitability in the motor pathway, changes in the sensory system, and factors associated. with the attention demanding, stressful and fearful aspects of pain. A new hypothesis is presented regarding the outcome from differential effects of pain on the elements of the motor system. Taken together these data argue for strategies of prevention and rehabilitation of LBP (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Passive electroreception is a complex and specialised sense found in a large range of aquatic vertebrates primarily designed for the detection of weak bioelectric fields. Particular attention has traditionally focused on cartilaginous fishes, but a range of teleost and non-teleost fishes from a diversity of habitats have also been examined. As more species are investigated, it has become apparent that the role of electroreception in fishes is not restricted to locating prey, but is utilised in other complex behaviours. This paper presents the various functional roles of passive electroreception in non-electric fishes, by reviewing much of the recent research on the detection of prey in the context of differences in species' habitat (shallow water, deep-sea, freshwater and saltwater). A special case study on the distribution and neural groupings of ampullary organs in the omnihaline bull shark, Carcharhinus leucas, is also presented and reveals that prey-capture, rather than navigation, may be an important determinant of pore distribution. The discrimination between potential predators and conspecifics and the role of bioelectric stimuli in social behaviour is discussed, as is the ability to migrate over short or long distances in order to locate environmentally favourable conditions. The various theories proposed regarding the importance and mediation of geomagnetic orientation by either an electroreceptive and/or a magnetite-based sensory system receives particular attention. The importance of electroreception to many species is emphasised by highlighting what still remains to be investigated, especially with respect to the physical, biochemical and neural properties of the ampullary organs and the signals that give rise to the large range of observed behaviours.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A quantitative comparison was made of both relative brain size (encephalization) and the relative development of five brain area of pelagic sharks and teleosts. Two integration areas (the telencephalon and the corpus cerebellum) and three sensory brain areas (the olfactory bulbs, optic tectum and octavolateralis area, which receive primary projections from the olfactory epithelium, eye and octavolateralis senses, respectively), in four species of pelagic shark and six species of pelagic teleost were investigated. The relative proportions of the three sensory brain areas were assessed as a proportion of the total 'sensory brain', while the two integration areas were assessed relative to the sensory brain. The allometric analysis of relative brain size revealed that pelagic sharks had larger brains than pelagic teleosts. The volume of the telencephalon was significantly larger in the sharks, while the corpus cerebellum was also larger and more heavily foliated in these animals. There were also significant differences in the relative development of the sensory brain areas between the two groups, with the sharks having larger olfactory bulbs and octavolateralis areas, whilst the teleosts had larger optic tecta. Cluster analysis performed on the sensory brain areas data confirmed the differences in the composition of the sensory brain in sharks and teleosts and indicated that these two groups of pelagic fishes had evolved different sensory strategies to cope with the demands of life in the open ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypersensitivity to a variety of sensory Stimuli is a feature of persistent whiplash associated disorders (WAD). However, little is known about sensory disturbances from the time Of injury until transition to either recovery or symptom persistence. Quantitative sensory testing (pressure and thermal pain thresholds, the brachial plexus provocation test), the sympathetic vasoconstrictor reflex and psychological distress (GHQ-28) were prospectively measured in 76 whiplash Subjects within 1 month of injury and then 2, 3 and 6 months post-injury. Subjects were classified at 6 months post-injury using scores on the Neck Disability Index: recovered (30). Sensory and sympathetic nervous system tests were also measured in 20 control subjects. All whiplash groups demonstrated local mechanical hyperalgesia in the cervica spine at 1 month post-injury. This hyperalgesia persisted in those with moderate/severe symptoms at 6 months but resolved by 2 months in those who had recovered or reported persistent mild symptoms. Only those with persistent moderate/severe symptoms at 6 months demonstrated generalised hypersensitivity to all sensory tests. These changes Occurred within 1 month of injury and remained Unchanged throughout the Study period. Whilst no significant group differences were evident for the sympathetic vasoconstrictor response, the moderate/severe group showed a tendency for diminished sympathetic reactivity. GHQ-28 scores of the moderate/severe group were higher than those of the other two groups. The differences in GHQ-28 did not impact on any of the sensory measures. These findings suggest that those with persistent moderate/severe symptoms at 6 months display, soon after injury, generalised hypersensitivity suggestive of changes in central pain processing mechanisms. This phenomenon did not Occur in those who recover or those with persistent mild symptoms. (C) 2003 International Association for the Study of Pain. Published by Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of chronic symptoms following whiplash injury is common and contributes substantially to costs associated with this condition. The currently used Quebec Task Force classification system of whiplash associated disorders is primarily based on the severity of signs and symptoms following injury and its usefulness has been questioned. Recent evidence is emerging that demonstrates differences in physical and psychological impairments between individuals who recover from the injury and those who develop persistent pain and disability. Motor dysfunction, local cervical mechanical hyperalgesia and psychological distress are present soon after injury in all whiplash injured persons irrespective of recovery. In contrast those individuals who develop persistent moderate/severe pain and disability show a more complex picture, characterized by additional impairments of widespread sensory hypersensitivity indicative of underlying disturbances in central pain processing as well as acute posttraumatic stress reaction, with these changes present from soon after injury. Based on this heterogeneity a new classification system is proposed that takes into account measurable disturbances in motor, sensory and psychological dysfunction. The implications for the management of this condition are discussed. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bi-sensory striped arrays are described in owl and platypus that share some similarities with the other variant of bi-sensory striped array found in primate and carnivore striate cortex: ocular dominance columns. Like ocular dominance columns, the owl and platypus striped systems each involve two different topographic arrays that are cut into parallel stripes, and interdigitated, so that higher-order neurons can integrate across both arrays. Unlike ocular dominance stripes, which have a separate array for each eye, the striped array in the middle third of the owl tectum has a separate array for each cerebral hemisphere. Binocular neurons send outputs from both hemispheres to the striped array where they are segregated into parallel stripes according to hemisphere of origin. In platypus primary somatosensory cortex (SI), the two arrays of interdigitated stripes are derived from separate sensory systems in the bill, 40,000 electroreceptors and 60,000 mechanoreceptors. The stripes in platypus SI cortex produce bimodal electrosensory-mechanosensory neurons with specificity for the time-of-arrival difference between the two systems. This thunder-and-lightning system would allow the platypus to estimate the distance of the prey using time disparities generated at the bill between the earlier electrical wave and the later mechanical wave caused by the motion of benthic prey. The functional significance of parallel, striped arrays is not clear, even for the highly-studied ocular dominance system, but a general strategy is proposed here that is based on the detection of temporal disparities between the two arrays that can be used to estimate distance. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Drosophila melanogaster, Slit acts as a repulsive cue for the growth cones of the commissural axons which express a receptor for Slit, Roundabout (Robo), thus preventing the commissural axons from crossing the midline multiple times. Experiments using explant culture have shown that vertebrate Slit homologues also act repulsively for growth cone navigation and neural migration, and promote branching and elongation of sensory axons. Here, we demonstrate that overexpression of Slit2 in vivo in transgenic zebrafish embryos severely affected the behavior of the commissural reticulospinal neurons (Mauthner neurons), promoted branching of the peripheral axons of the trigeminal sensory ganglion neurons, and induced defasciculation of the medial longitudinal fascicles. In addition, Slit2 overexpression caused defasciculation and deflection of the central axons of the trigeminal sensory ganglion neurons from the hindbrain entry point. The central projection was restored by either functional repression or mutation of Robo2, supporting its role as a receptor mediating the Slit signaling in vertebrate neurons. Furthermore, we demonstrated that Islet-2, a LIM/homeodomain-type transcription factor, is essential for Slit2 to induce axonal branching of the trigeminal sensory ganglion neurons, suggesting that factors functioning downstream of Islet-2 are essential for mediating the Slit signaling for promotion of axonal branching. (C) 2004 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary olfactory neurons situated in the nasal septum project axons within fascicles along a highly stereotypical trajectory en route to the olfactory bulb. The ventral fascicles make a distinct dorsovental turn at the rear of the septum so as to reach the olfactory bulb. In the present study we have used a brain and nasal septum coculture system to examine the role of target tissue on the peripheral trajectory of olfactory sensory axons. In cultures of isolated embryonic nasal septa, olfactory axons form numerous parallel fascicles that project caudally in the submucosa, as they do in vivo. The ventral axon fascicles in the septum, however, often fail to turn, and do not project dorsally towards the roof of the nasal cavity. The presence of olfactory bulb, cortical, or tectal tissue apposed to the caudal end of the septum rescued this phenotype, causing the ventral fascicles to follow a normal in vivo-like trajectory. Ectopic placements of the explants revealed that brain tissue is not tropic for olfactory axons but appears to maintain the peripheral trajectory of growing axons in the nasal septum. Although primary olfactory axons are able to penetrate into olfactory bulb in vitro, they only superficially enter cortical tissue, whereas they do not grow into tectal explants. The ability of axons to differentially grow into different brain regions was shown to be unrelated to the migratory behavior of olfactory ensheathing cells, indicating that olfactory axons are directly responsive to guidance cues in the brain. (C) 2004 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Animal color pattern phenotypes evolve rapidly. What influences their evolution? Because color patterns are used in communication, selection for signal efficacy, relative to the intended receiver's visual system, may explain and predict the direction of evolution. We investigated this in bowerbirds, whose color patterns consist of plumage, bower structure, and ornaments and whose visual displays are presented under predictable visual conditions. We used data on avian vision, environmental conditions, color pattern properties, and an estimate of the bowerbird phylogeny to test hypotheses about evolutionary effects of visual processing. Different components of the color pattern evolve differently. Plumage sexual dimorphism increased and then decreased, while overall (plumage plus bower) visual contrast increased. The use of bowers allows relative crypsis of the bird but increased efficacy of the signal as a whole. Ornaments do not elaborate existing plumage features but instead are innovations (new color schemes) that increase signal efficacy. Isolation between species could be facilitated by plumage but not ornaments, because we observed character displacement only in plumage. Bowerbird color pattern evolution is at least partially predictable from the function of the visual system and from knowledge of different functions of different components of the color patterns. This provides clues to how more constrained visual signaling systems may evolve.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigated the actions of the polyether marine toxin Pacific ciguatoxin-1 (P-CTX-1) on neuronal excitability in rat dorsal root ganglion (DRG) neurons using patch-clamp recording techniques. Under current-clamp conditions, bath application of 2-20 nM P-CTX-1 caused a rapid, concentration-dependent depolarization of the resting membrane potential in neurons expressing tetrodotoxin (TTX)-sensitive voltage-gated sodium (Na-v,.) channels. This action was completely suppressed by the addition of 200 nM TTX to the external solution, indicating that this effect was mediated through TTX-sensitive Na-v channels. In addition, P-CTX-1 also prolonged action potential and afterhyperpolarization (AHP) duration. In a subpopulation of neurons, P-CTX-1 also produced tonic action potential firing, an effect that was not accompanied by significant oscillation of the resting membrane potential. Conversely, in neurons expressing TTX-resistant Na-v currents, P-CTX-1 failed to alter any parameter of neuronal excitability examined in this study. Under voltage-clamp conditions in rat DRG neurons, P-CTX-1 inhibited both delayed-rectifier and 'A-type' potassium currents in a dose-dependent manner, actions that Occurred in the absence of alterations to the voltage dependence of activation. These actions appear to underlie the prolongation of the action potential and AHP. and contribute to repetitive firing. These data indicate that a block of potassium channels contributes to the increase in neuronal excitability, associated with a modulation of Na-v. channel gating, observed clinically in response to ciguatera poisoning. (c) 2004 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of gymnolaemate Ectoprocta includes a larval stage of either the coronate or the cyphonautes type. Herein, we provide the first description of the larval neural anatomy of a coronate larva using immunocytochemical methods. We used antibodies against the neurotransmitters serotonin and FMRFamide and followed the fate of immunoreactive cells through metamorphosis. The larval serotonergic nervous system of Triphyllozoon mucronatum consists of an apical commissure, one pair of lateral axons, a coronate nerve net, an internal nerve mesh, and one pair of axons innervating the frontal organ. FMRFamide is only found in the larval commissure and in the lateral axons. The entire serotonergic and FMRFamidergic nervous system is lost during metamorphosis and the adult neural structures form independent of the larval ones. In the postlarval zooid, both neurotransmitters are detected in the cerebral commissure, in cell bodies located at the base of the lophophore, and in neurites connecting these somata to the cerebral commissure. These findings differ significantly from that observed in other lophotrochozoans, where certain larval neural features are either incorporated in the adult nervous system and/or have inductive functions during its ontogeny. The occurrence of a larval commissure and the lack of a serotonergic or FMRFamidergic apical organ in T. mucronatum are unique among lophotrochozoan larvae, which usually have a distinct apical organ containing serotonergic cells. Our data show that the larval neuroanatomy and the processes that underlie the reorganization of larval organ systems during metamorphosis may vary much more among lophotrochozoan taxa than previously thought.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary sensory neurons in the vertebrate olfactory systems are characterised by the differential expression of distinct cell surface carbohydrates. We show here that the histo-blood groups Sda (or CT1 antigen) and H are expressed by primary sensory neurons in the olfactory system, while the blood group A carbohydrate is expressed by a subset of vomeronasal neurons only in the developing accessory olfactory system. We have used both loss-of-function and gain-of-function approaches to manipulate expression of these carbohydrates in the olfactory system. In null mutant mice lacking the alpha(1,2)fucosyltransferase FUT1, the blood group H and A carbohydrates were not expressed in the olfactory systems which caused delayed development of the nerve fibre and glomerular layers in the main olfactory bulb. In contrast, ubiquitous expression of blood group A on olfactory axons in gain-of-function transgenic mice perturbed the ability of vomeronasal axons to terminate in the accessory olfactory bulb and affected the selective targeting of axons in the main olfactory bulb. During regeneration following bulbectomy, vomeronasal axons were unable to effectively sort out from the main olfactory axons when blood group A was misexpressed. These results provide in vivo evidence for a role of specific cell surface carbohydrates during development and regeneration of the olfactory nerve pathways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Primary sensory neurons in the vertebrate olfactory systems are characterised by the differential expression of distinct cell surface carbohydrates. We show here that the histo-blood group H carbohydrate is expressed by primary sensory neurons in both the main and accessory olfactory systems while the blood group A carbohydrate is expressed by a subset of vomeronasal neurons in the developing accessory olfactory system. We have used both loss-of-function and gain-of-function approaches to manipulate expression of these carbohydrates in the olfactory system. In null mutant mice lacking the alpha(1,2)fucosyltransferase FUT1, the absence of blood group H carbohydrate resulted in the delayed maturation of the glomerular layer of the main olfactory bulb. In addition, ubiquitous expression of blood group A on olfactory axons in gain-of-function transgenic mice caused mis-routing of axons in the glomerular layer of the main olfactory bulb and led to exuberant growth of vomeronasal axons in the accessory olfactory bulb. These results provide in vivo evidence for a role of specific cell surface carbohydrates during development of the olfactory nerve pathways. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The tetroclotoxin-resistant voltage-gated sodium channel (VGSC) Na(v)1.8 is expressed predominantly by damage-sensing primary afferent nerves and is important for the development and maintenance of persistent pain states. Here we demonstrate that mu O-conotoxin MrVIB from Conus marmoreus displays substantial selectivity for Na(v)1.8 and inhibits pain behavior in models of persistent pain. In rat sensory neurons, submicromolar concentrations of MrVIB blocked tetroclotoxin-resistant current characteristic of Na(v)1.8 but not Na(v)1.9 or tetroclotoxin-sensitive VGSC currents. MrVIB blocked human Nav1.8 expressed in Xenopus oocytes with selectivity at least 10-fold greater than other VGSCs. In neuropathic and chronic inflammatory pain models, allodynia and hyperalgesia were both reduced by intrathecal infusion of MrVIB (0.03-3 nmol), whereas motor side effects occurred only at 30-fold higher doses. In contrast, the nonselective VGSC blocker lignocaine displayed no selectivity for allodynia and hyperalgesia versus motor side effects. The actions of MrVIB reveal that VGSC antagonists displaying selectivity toward Na(v)1.8 can alleviate chronic pain behavior with a greater therapeutic index than nonselective antagonists.