50 resultados para Sennett, Richard: The corrosion of caracter

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corrosion of die cast AZ91D was studied and related to its microstructure. For comparison and to more fully understand the behaviour of die cast AZ91D, corrosion studies and microstructural examinations were also carried out using slowly solidified high purity AZ91, Mg-2%Al, Mg-9%Al, low purity magnesium and high purity magnesium. Corrosion was studied in 1N NaCl at pH 11 by (1) observing the corrosion morphology, (2) measuring electrochemical polarisation curves and (3) simultaneously measuring both the hydrogen evolution rate and the magnesium dissolution rate. The skin of die cast AZ91D showed better corrosion resistance than the interior. This is attributed to a combination of(1) a higher volume fraction of the beta phase, (2) a more continuous beta phase distribution around finer alpha grains, and (3) lower porosity in the skin layer than in the interior of the die casting. This study showed that the casting method can influence the corrosion performance by its influence on the alloy microstructure. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electrochemical investigation was carried out to study the corrosion of pure magnesium in 1 N NaCl at different pH values involving electrochemical polarisation, scanning tunnel microscopy (STM), measurement of hydrogen gas evolution and measurement of the elements dissolved from the magnesium specimen which were determined by inductively coupled plasma atomic emission spectrophotometry (ICPAES). A partially protective surface film was a principal factor controlling corrosion. Film coverage decreased with increasing applied electrode potential. Application of a suitable external cathodic current density was shown to inhibit magnesium dissolution whilst at the same time the hydrogen evolution rate was relatively small. This showed that cathodic protection could be used to significantly reduce magnesium corrosion. A new definition is proposed for the negative difference effect (NDE). (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water wetting is a crucial issue in carbon dioxide (CO.) corrosion of multiphase flow pipelines made from mild steel. This study demonstrates the use of a novel benchtop apparatus, a horizontal rotating cylinder, to study the effect of water wetting on CO2 corrosion of mild steel in two-phase flow. The setup is similar to a standard rotating cylinder except for its horizontal orientation and the presence of two phases-typically water and oil. The apparatus has been tested by using mass-transfer measurements and CO2 corrosion measurements in single-phase water flow. CO2 corrosion measurements were subsequently performed using a water/hexane mixture with water cuts varying between 5% and 50%. While the metal surface was primarily hydrophilic under stagnant. conditions, a variety of dynamic water wetting situations was encountered as the water cut and fluid velocity were altered. Threshold velocities were identified at various water cuts when the surface became oil-wet and corrosion stopped.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A model of iron carbonate (FeCO3) film growth is proposed, which is an extension of the recent mechanistic model of carbon dioxide (CO2) corrosion by Nesic, et al. In the present model, the film growth occurs by precipitation of iron carbonate once saturation is exceeded. The kinetics of precipitation is dependent on temperature and local species concentrations that are calculated by solving the coupled species transport equations. Precipitation tends to build up a layer of FeCO3 on the surface of the steel and reduce the corrosion rate. On the other hand, the corrosion process induces voids under the precipitated film, thus increasing the porosity and leading to a higher corrosion rate. Depending on the environmental parameters such as temperature, pH, CO2 partial pressure, velocity, etc., the balance of the two processes can lead to a variety of outcomes. Very protective films and low corrosion rates are predicted at high pH, temperature, CO2 partial pressure, and Fe2+ ion concentration due to formation of dense protective films as expected. The model has been successfully calibrated against limited experimental data. Parametric testing of the model has been done to gain insight into the effect of various environmental parameters on iron carbonate film formation. The trends shown in the predictions agreed well with the general understanding of the CO2 corrosion process in the presence of iron carbonate films. The present model confirms that the concept of scaling tendency is a good tool for predicting the likelihood of protective iron carbonate film formation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the beta phase in Mg-Al alloys on the corrosion performance of an anodised coating was studied. It was found that the corrosion resistance of the anodised coating was closely associated with the corrosion performance of the substrate alloy. In particular, Mg alloys with a dual phase microstructure of alpha + beta with intermediate aluminium contents (namely 5%, 10% and 22% Al) after anodisation had the highest corrosion rate and the worst corrosion resistance provide by the anodised coating. The poor performance of an anodised coating was attributed partly to lower corrosion resistance of the substrate alloy and partly to the higher porosity of the anodised coating. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research investigated the galvanic corrosion of the magnesium alloy AZ91D coupled to steel. The galvanic current distribution was measured in 5% NaCl solution, corrosive water and an auto coolant. The experimental measurements were compared with predictions from a Boundary Element Method (BEM) model. The boundary condition, required as an input into the BEM model, needs to be a polarization curve that accurately reflects the corrosion process. Provided that the polarization curve does reflect steady state, the BEM model is expected to be able to reflect steady state galvanic corrosion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The magnesium alloy AM-SC1 has been developed as a creep-resistant automotive engine block material. This paper outlines its corrosion performance under laboratory test conditions, considering corrosion on both the external and internal surfaces. This study found that AM-SC1 has a corrosion performance comparable to AZ91 when subjected to an aggressive salt-spray environment or in galvanic-coupling environments. This article further demonstrates that, with the appropriate selection of a commercially available engine coolant, the internal corrosion of AM-SC1 can be maintained at a tolerable level. In addition, internal corrosion resistance can be significantly improved by the addition of fluorides to the coolant solution. It is concluded that AM-SC1 can be successfully used in an engine environment provided that some simple corrosion-prevention strategies are adopted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thickness, chemical composition and microstructure of anodised coatings formed on magnesium alloy AZ91D at various anodising current densities were measured. It was found that all these parameters could be affected by anodising current density, and hence the coatings formed at different anodising current densities had different corrosion resistances. This suggests that the corrosion performance of an anodised coating could be improved if a properly designed current waveform is used for anodising. In addition, based on the experimental results, some physical, chemical and electrochemical reactions involved in the anodising process were proposed to explain the anodising behaviour in this paper. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corrosion rates of 1020 steel in 2.75 M NaOH solution at a temperature of 160 degrees C and velocities of 0.32 and 2.5 m/s were studied. The focus was on the effect of the acid cleaning which was performed by using strong, inhibited sulphuric acid in between the exposures to caustic. In situ electrochemical methods were used to measure the corrosion rate such as the potentiodynamic sweep and the polarization resistance method. Also used were the weight-loss method and scanning electron microscopy (SEM). Eight electrodes/coupons were used to monitor the metal loss rate, four were placed at the low velocity section, while the other four were placed in the high velocity section of a high temperature flow. The first three coupons in each section were placed within the disturbed flow region, while the fourth was placed in a fully developed flow region. During the exposure of mild steel to the inhibited acid, following the first caustic period, the corrosion rate increased significantly to between 3 and 10mm/y with a few electrodes experiencing as high as 50 mm/y. The second caustic period following the acidic period typically started with very high corrosion rates (20-80 mm/y). The length of this corrosion period was typically 2-3 h with a few exceptions when the high corrosion period lasted 7-10 h. Following the very high corrosion rates experienced at the beginning of the second caustic period, the corrosion rates were reduced sharply (as the corrosion potential increased) to nearly the same levels as those observed during the passive part of the first caustic period. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corrosion performance of anodised magnesium and its alloys, such as commercial purity magnesium (CP-Mg) and high-purity magnesium (HP-Mg) ingots, magnesium alloy ingots of MEZ, ZE41, AM60 and AZ91D and diecast AM60 (AM60-DC) and AZ91D (AZ91D-DC) plates, was evaluated by salt spray and salt immersion testing. The corrosion resistance was in the sequential order: AZ91D approximate to AM60 approximate to MEZ >= AZ91D-DC >= AM60-DC > HP-Mg > ZE41 > CP-Mg. It was concluded the corrosion resistance of an anodised magnesium alloy was determined by the corrosion performance of the substrate alloy due to the porous coating formed on the substrate alloy acting as a simple corrosion barrier. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the results of atmospheric corrosion testing and of an examination of patina samples from Brisbane, Denmark, Sweden, France, USA and Austria. The aim was threefold: (1) to determine the structure of natural patinas and to relate their structure to their appearance in service and to the atmospheric corrosion of copper; (2) to understand why a brown rust coloured layer forms on the surface of some copper patinas; (3) to understand why some patinas are still black in colour despite being of significant age. During the atmospheric corrosion of copper, a two-layer patina forms on the copper surface. Cuprite is the initial corrosion product and cuprite is always the patina layer in contact with the copper. The growth laws describing patina formation indicate that the decreasing corrosion rate with increasing exposure time is due to the protective nature of the cuprite layer. The green patinas were typically characterised by an outer layer of brochantite, which forms as individual crystals on the surface of the cuprite layer, probably by a precipitation reaction from an aqueous surface layer on the cuprite layer. Natural patinas come in a variety of colours. The colour is controlled by the amount of the patina and its chemical composition. Thin patinas containing predominantly cuprite were black. If the patina was sufficiently thick, and the [Fe]/[Cu] ratio was low, then the patina was green, whereas if the [Fe]/[Cu] ratio was approximately 10 at%, then the patina is rust brown in colour. The iron was in solid solution in the brochantite, which might be designated as a (copper/iron) hydroxysulphate. In the brown patinas examined, the iron was distributed predominately in the outermost part of the patina. (c) 2005 Elsevier Ltd. All rights reserved.