160 resultados para Self-organizing networks
em University of Queensland eSpace - Australia
Resumo:
The parameterless self-organizing map (PLSOM) is a new neural network algorithm based on the self-organizing map (SOM). It eliminates the need for a learning rate and annealing schemes for learning rate and neighborhood size. We discuss the relative performance of the PLSOM and the SOM and demonstrate some tasks in which the SOM fails but the PLSOM performs satisfactory. Finally we discuss some example applications of the PLSOM and present a proof of ordering under certain limited conditions.
Resumo:
An economy is a coordinated system of distributed knowledge. Economic evolution occurs as knowledge grows and the structure of the system changes. This paper is about the role of markets in this process. Traditionally, the theory of markets has not been a central feature of evolutionary economics. This seems to be due to the orthodox view of markets as information-processing mechanisms for finding equilibria. But in economic evolution markets are actually knowledge-structuring mechanisms. What then is the relation between knowledge, information, markets and mechanisms? I argue that an evolutionary theory of markets, in the manner of Loasby (1999), requires a clear formulation of these relations. I suggest that a conception of knowledge and markets in terms of a graphical theory of complex systems furnishes precisely this.
Resumo:
This paper presents a novel method for enabling a robot to determine the direction to a sound source through interacting with its environment. The method uses a new neural network, the Parameter-Less Self-Organizing Map algorithm, and reinforcement learning to achieve rapid and accurate response.
Resumo:
A theoretical model was developed to investigate the relationships among subordinate-manager gender combinations, perceived leadership style, experienced frustration and optimism, organization-based self-esteem and organizational commitment. The model was tested within the context of a probabilistic structural model, a discrete Bayesian network, using cross-sectional data from a global pharmaceutical company. The Bayesian network allowed forward inference to assess the relative influence of gender combination and leadership style on the emotions, self-esteem and commitment consequence variables. Further, diagnostics from backward inference were used to assess the relative influence of variables antecedent to organizational commitment. The results showed that gender combination was independent of leadership style and had a direct impact on subordinates' levels of frustration and optimism. Female manager-female subordinate had the largest probability of optimism, while male manager teamed with a male subordinate had the largest probability of frustration. Furthermore, having a female manager teamed up with a male subordinate resulted in the lowest possibility of frustration. However, the findings show that the gender issue is not simply female managers versus male managers, but is concerned with the interaction of the subordinate-manager gender combination and leadership style in a nonlinear manner. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
In this letter, we propose a class of self-stabilizing learning algorithms for minor component analysis (MCA), which includes a few well-known MCA learning algorithms. Self-stabilizing means that the sign of the weight vector length change is independent of the presented input vector. For these algorithms, rigorous global convergence proof is given and the convergence rate is also discussed. By combining the positive properties of these algorithms, a new learning algorithm is proposed which can improve the performance. Simulations are employed to confirm our theoretical results.
Resumo:
Wireless Mesh Networks (WMNs), based on commodity hardware, present a promising technology for a wide range of applications due to their self-configuring and self-healing capabilities, as well as their low equipment and deployment costs. One of the key challenges that WMN technology faces is the limited capacity and scalability due to co-channel interference, which is typical for multi-hop wireless networks. A simple and relatively low-cost approach to address this problem is the use of multiple wireless network interfaces (radios) per node. Operating the radios on distinct orthogonal channels permits effective use of the frequency spectrum, thereby, reducing interference and contention. In this paper, we evaluate the performance of the multi-radio Ad-hoc On-demand Distance Vector (AODV) routing protocol with a specific focus on hybrid WMNs. Our simulation results show that under high mobility and traffic load conditions, multi-radio AODV offers superior performance as compared to its single-radio counterpart. We believe that multi-radio AODV is a promising candidate for WMNs, which need to service a large number of mobile clients with low latency and high bandwidth requirements.
Resumo:
There is substantial disagreement among published epidemiological studies regarding environmental risk factors for Parkinson’s disease (PD). Differences in the quality of measurement of environmental exposures may contribute to this variation. The current study examined the test–retest repeatability of self-report data on risk factors for PD obtained from a series of 32 PD cases recruited from neurology clinics and 29 healthy sex-, age-and residential suburb-matched controls. Exposure data were collected in face-to-face interviews using a structured questionnaire derived from previous epidemiological studies. High repeatability was demonstrated for ‘lifestyle’ exposures, such as smoking and coffee/tea consumption (kappas 0.70–1.00). Environmental exposures that involved some action by the person, such as pesticide application and use of solvents and metals, also showed high repeatability (kappas>0.78). Lower repeatability was seen for rural residency and bore water consumption (kappa 0.39–0.74). In general, we found that case and control participants provided similar rates of incongruent and missing responses for categorical and continuous occupational, domestic, lifestyle and medical exposures.
Resumo:
We investigate the effect of coexisting transverse modes on the operation of self-mixing sensors based on vertical-cavity surface-emitting lasers (VCSELs). The effect of multiple transverse modes on the measurement of displacement and distance were examined by simulation and in laboratory experiment. The simulation model shows that the periodic change in the shape and magnitude of the self-mixing signal with modulation current can be properly explained by the different frequency-modulation coefficients of the respective transverse modes in VCSELs. The simulation results are in excellent agreement with measurements performed on single-mode and multimode VCSELs and on self-mixing sensors based on these VCSELs.
Resumo:
An issue at the forefront of recent emotional intelligence debates revolves around whether emotional intelligence can be linked to work performance. Although many authors continue to develop new and improved measures of emotional intelligence (e.g. Mayer, Caruso, & Salovey, 2001) to give us a better understanding of emotional intelligence, the links to performance in work settings, especially in the context of group effectiveness, have received much less attention. In this chapter, we present the results of a study in which we examined the role of emotional self-awareness and emotional intelligence as a predictor of group effectiveness. The study also addresses the utility of self- and peer assessment in measureing emotional self-awareness and emotional intelligence.
Resumo:
In this paper, we propose a fast adaptive importance sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First, we estimate the minimum cross-entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level. Finally, the tilting parameter just found is used to estimate the overflow probability of interest. We study various properties of the method in more detail for the M/M/1 queue and conjecture that similar properties also hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm.
Resumo:
In high-velocity open channel flows, free-surface aeration is commonly observed. The effects of surface waves on the air-water flow properties are tested herein. The study simulates the air-water flow past a fixed-location phase-detection probe by introducing random fluctuations of the flow depth. The present model yields results that are close to experimental observations in terms of void fraction, bubble count rate and bubble/droplet chord size distributions. The results show that the surface waves have relatively little impact on the void fraction profiles, but that the bubble count rate profiles and the distributions of bubble and chord sizes are affected by the presence of surface waves.
Resumo:
The reconstruction of power industries has brought fundamental changes to both power system operation and planning. This paper presents a new planning method using multi-objective optimization (MOOP) technique, as well as human knowledge, to expand the transmission network in open access schemes. The method starts with a candidate pool of feasible expansion plans. Consequent selection of the best candidates is carried out through a MOOP approach, of which multiple objectives are tackled simultaneously, aiming at integrating the market operation and planning as one unified process in context of deregulated system. Human knowledge has been applied in both stages to ensure the selection with practical engineering and management concerns. The expansion plan from MOOP is assessed by reliability criteria before it is finalized. The proposed method has been tested with the IEEE 14-bus system and relevant analyses and discussions have been presented.
Resumo:
Skimming flows on stepped spillways are characterised by a significant rate of turbulent dissipation on the chute. Herein an advanced signal processing of traditional conductivity probe signals is developed to provide further details on the turbulent time and length scales. The technique is applied to a 22° stepped chute operating with flow Reynolds numbers between 3.8 and 7.1 E+5. The new correlation analyses yielded a characterisation of large eddies advecting the bubbles. The turbulent length scales were related to the characteristic depth Y90. Some self-similar relationships were observed systematically at both macroscopic and microscopic levels. These included the distributions of void fraction, bubble count rate, interfacial velocity and turbulence level, and turbulence time and length scales. The self-similarity results were significant because they provided a picture general enough to be used to characterise the air-water flow field in prototype spillways.