6 resultados para Selective culture medium

em University of Queensland eSpace - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyethylcyanoacrylate (PECA) nanoparticles were prepared by interfacial polymerization of a water-in-oil microemulsion. Nanoparticles were isolated from the polymerization template by sequential ethanol washing and centrifugation. A nanocapsule preparation yielding the original particle size and distribution following redispersion in an aqueous solution was achieved by freeze-drying the isolated nanoparticles in a solution of 5% w/v sugar. The cytotoxicity and uptake of nanocapsules by dendritic cells was investigated using a murine-derived cell line (D1). PECA nanoparticles were found to adversely effect cell viability at concentrations greater than 10 mug/ml of polymer in the culture medium. In comparison to antigen in solution, cell uptake of antigen encapsulated within nanoparticles was significantly higher at both 4 and 37 degreesC. Following a 24 h incubation period, the percentage of cells taking-up antigen was also increased when antigen was encapsulated in nanoparticles as compared to antigen in solution. The uptake of nanoparticles and the effect of antigen formulation on morphological cell changes indicative of cell maturation were also investigated by scanning electron microscopy (SEM). SEM clearly demonstrated the adherence of nanoparticles to the cell surface. Incubation of D1 dendritic cells with nanoparticles containing antigen also resulted in morphological changes indicative of cell maturation similar to that observed when the cells were incubated with lipopolysaccharide. In contrast, cells incubated with antigen solution did not demonstrate such morphological changes and appeared similar to immature cells that had not been exposed to antigen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Burn sepsis is a leading cause of mortality and morbidity in patients with major burns. The use of topical antimicrobial agents has helped improve the survival of these patients. Silvazine (Sigma Pharmaceuticals, Melbourne, Australia) (1% silver sulphadiazine and 0.2% chlorhexidine digluconate) is used exclusively in Australasia, and there is no published study on its cytotoxicity. This study compared the relative cytotoxicity of Silvazine with 1% silver sulphadiazine (Flamazine (Smith & Nephew Healthcare. Hull. UK)) and a silver-based dressing (Acticoat (Smith & Nephew Healthcare, Hull, UK)). Methods: Dressings were applied to the centre of culture plates that were then seeded with keratinocytes at an estimated 25% confluence. The plates were incubated for 72 h and culture medium and dressings then removed. Toluidine blue was added to stain the remaining keratinocytes. Following removal of the dye, the plates were photographed under standard conditions and these digital images were analysed using image analysis software. Data was analysed using Student's t-test. Results: In the present study, Silvazine is the most cytotoxic agent. Seventy-two hour exposure to Silvazine in the present study results in almost no keratinocyte survival at all and a highly statistically significant reduction in cell survival relative to control, Acticoat and Flamazine (P

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have developed a simple and robust transient expression system utilizing the 25 kDa branched cationic polymer polyethylenimine (PEI) as a vehicle to deliver plasmid DNA into suspension-adapted Chinese hamster ovary cells synchronized in G2/M phase of the cell cycle by anti-mitotic microtubule disrupting agents. The PEI-mediated transfection process was optimized with respect to PEI nitrogen to DNA phosphate molar ratio and the plasmid DNA mass to cell ratio using a reporter construct encoding firefly luciferase. Optimal production of luciferase was observed at a PEI N to DNA P ratio of 10:1 and 5 mug DNA 10(6) cells(-1). To manipulate transgene expression at mitosis, we arrested cells in G2/M phase of the cell cycle using the microtubule depolymerizing agent nocodazole. Using secreted human alkaline phosphatase (SEAP) and enhanced green fluorescent protein (eGFP) as reporters we showed that continued inclusion of nocodazole in cell culture medium significantly increased both transfection efficiency and reporter protein production. In the presence of nocodazole, greater than 90% of cells were eGFP positive 24 h post-transfection and qSEAP was increased almost fivefold, doubling total SEAP production. Under optimal conditions for PEI-mediated transfection, transient production of a recombinant chimeric IgG(4) encoded on a single vector was enhanced twofold by nocodazole, a final yield of approximately 5 mug mL(-1) achieved at an initial viable cell density of 1 x 10(6) cells mL(-1). The glycosylation of the recombinant antibody at Asn(297) was not significantly affected by nocodazole during transient production by this method. (C) 2004 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intestinal chiral inversion of ibuprofen is still lacking direct evidence. In a preliminary experiment, ibuprofen was found to undergo inversion in Caco-2 cells. This investigation was thus conducted to determine the characteristics and influence of some biochemical factors on the chiral inversion of ibuprofen in Caco-2 cells. The effects of substrate concentration (2.5-40 mu g/ml), cell density (0.5-2 x 10(6) cells/ well), content of serum (0-20%), coexistence of S ibuprofen (corresponding doses), sodium azide (10mm), exogenous Coenzyme A (CoA) (0.1 - 0.4 mm),. and palmitic acid (5-25 mu m) on inversion were examined. A stereoselective HPLC method based on the Chromasil-CHI-TBB column was developed for quantitative analysis of the drug in cell culture medium. The inversion ratio (F-i) and elimination rate constant were calculated as the indexes of inversion extent. Inversion of ibuprofen in Caeo-2 cells was found to be both dose and cell density dependent, indicating saturable characteristics. Addition of serum significantly inhibited the inversion, to an extent of 2.7 fold decrease at 20% content. Preexistence of S enantiomer exerted a significant inhibitory effect (p < 0.01 for all tests). Sodium azide decreased the inversion ratio from 0.43 to 0.32 (p < 0.01). Exogenous CoA and palmitic acid significantly promoted the inversion at all tested doses (p < 0.01 for all tests). This research provided strong evidence to the capacity and capability of intestinal chiral inversion. Although long incubation times up to 120 h were required, Caco-2 cells should be a suitable model for chiral inversion research of 2-APAs considering the human-resourced and well-defined characteristics from the present study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study describes the identification of outer membrane proteins (OMPs) of the bacterial pathogen Pasteurella multocida and an analysis of how the expression of these proteins changes during infection of the natural host. We analysed the sarcosine-insoluble membrane fractions, which are highly enriched for OMPs, from bacteria grown under a range of conditions. Initially, the OMP-containing fractions were resolved by 2-DE and the proteins identified by MALDI-TOF MS. In addition, the OMP-containing fractions were separated by 1-D SDS-PAGE and protein identifications were made using nano LC MS/MS. Using these two methods a total of 35 proteins was identified from samples obtained from organisms grown in rich culture medium. Six of the proteins were identified only by 2-DE MALDI-TOF MS, whilst 17 proteins were identified only by 1-D LC MS/MS. We then analysed the OMPs from P. multocida which had been isolated from the bloodstream of infected chickens (a natural host) or grown in iron-depleted medium. Three proteins were found to be significantly up-regulated during growth in vivo and one of these (Pm0803) was also up-regulated during growth in iron-depleted medium. After bioinformatic analysis of the protein matches, it was predicted that over one third of the combined OMPs predicted by the bioinformatics sub-cellular localisation tools PSORTB and Proteome Analyst, had been identified during this study. This is the first comprehensive proteomic analysis of the P. multocida outer membrane and the first proteomic analysis of how a bacterial pathogen modifies its outer membrane proteome during infection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hepcidin is a liver-expressed antimicrobial and iron regulatory peptide. A number of studies have indicated that hepcidin is important for the correct regulation of body iron homeostasis. The aims of this study were to analyse the expression, trafficking and regulation of human hepcidin in an in vitro cell culture system. Human hepcidin was transfected into human embryonic kidney cells. Immunofluorescence and confocal microscopy analysis revealed that recombinant hepcidin localised to the Golgi complex. Recombinant hepcidin is secreted from the cell within 1 h of its synthesis. Recombinant hepcidin was purified from the cell culture medium using ion-exchange and metal-affinity chromatography and was active in antimicrobial assays. Amino-terminal sequence analysis of the secreted peptide revealed that it was the mature 25 amino acid form of hepcidin. Our results show that recombinant myc-His tagged human hepcidin was expressed, processed and secreted correctly and biologically active in antimicrobial assays. (C) 2005 Elsevier SAS. All rights reserved.