36 resultados para Segmented Regression
em University of Queensland eSpace - Australia
Resumo:
We demonstrate that the process of generating smooth transitions Call be viewed as a natural result of the filtering operations implied in the generation of discrete-time series observations from the sampling of data from an underlying continuous time process that has undergone a process of structural change. In order to focus discussion, we utilize the problem of estimating the location of abrupt shifts in some simple time series models. This approach will permit its to address salient issues relating to distortions induced by the inherent aggregation associated with discrete-time sampling of continuous time processes experiencing structural change, We also address the issue of how time irreversible structures may be generated within the smooth transition processes. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
This study examined the relationship between isokinetic hip extensor/hip flexor strength, 1-RM squat strength, and sprint running performance for both a sprint-trained and non-sprint-trained group. Eleven male sprinters and 8 male controls volunteered for the study. On the same day subjects ran 20-m sprints from both a stationary start and with a 50-m acceleration distance, completed isokinetic hip extension/flexion exercises at 1.05, 4.74, and 8.42 rad.s(-1), and had their squat strength estimated. Stepwise multiple regression analysis showed that equations for predicting both 20-m maximum velocity nm time and 20-m acceleration time may be calculated with an error of less than 0.05 sec using only isokinetic and squat strength data. However, a single regression equation for predicting both 20-m acceleration and maximum velocity run times from isokinetic or squat tests was not found. The regression analysis indicated that hip flexor strength at all test velocities was a better predictor of sprint running performance than hip extensor strength.
Resumo:
A significant problem in the collection of responses to potentially sensitive questions, such as relating to illegal, immoral or embarrassing activities, is non-sampling error due to refusal to respond or false responses. Eichhorn & Hayre (1983) suggested the use of scrambled responses to reduce this form of bias. This paper considers a linear regression model in which the dependent variable is unobserved but for which the sum or product with a scrambling random variable of known distribution, is known. The performance of two likelihood-based estimators is investigated, namely of a Bayesian estimator achieved through a Markov chain Monte Carlo (MCMC) sampling scheme, and a classical maximum-likelihood estimator. These two estimators and an estimator suggested by Singh, Joarder & King (1996) are compared. Monte Carlo results show that the Bayesian estimator outperforms the classical estimators in almost all cases, and the relative performance of the Bayesian estimator improves as the responses become more scrambled.
Resumo:
Purpose: To determine whether constriction of proximal arterial vessels precedes involution of the distal hyaloid vasculature in the mouse, under normal conditions, and whether this vasoconstriction is less pronounced when the distal hyaloid network persists, as it does in oxygen-induced retinopathy (OIR). Methods: Photomicrographs of the vasa hyaloidea propria were analysed from pre-term pups (1-2 days prior to birth), and on Days 1-11 post-birth. The OIR model involved exposing pups to similar to 90% O-2 from D1-5, followed by return to ambient air. At sampling times pups were anaesthetised and perfused with india ink. Retinal flatmounts were also incubated with FITC-lectin (BS-1, G. simplicifolia,); this labels all vessels, allowing identification of vessels not patent to the perfusate. Results: Mean diameter of proximal hyaloid vessels in preterm pups was 25.44 +/- 1.98 mum; +/-1 SEM). Within 3-12 hrs of birth, significant vasoconstriction was evident (diameter:12.45 +/- 0.88 mum), and normal hyaloid regression subsequently occurred. Similar vasoconstriction occurred in the O-2-treated group, but this was reversed upon return to room air, with significant dilation of proximal vessels by D7 (diameter: 31.75 +/- 11.99 mum) and distal hyaloid vessels subsequently became enlarged and tortuous. Conclusions: Under normal conditions, vasoconstriction of proximal hyaloid vessels occurs at birth, preceding attenuation of distal hyaloid vessels. Vasoconstriction also occurs in O-2-treated pups during treatment, but upon return to room air, the remaining hyaloid vessels dilate proximally, and the distal vessels become dilated and tortuous. These observations support the contention that regression of the hyaloid network is dependent, in the first instance, on proximal arterial vasoconstriction.
Resumo:
Endeostigmata are early derivative acariform mites, fossils of which are known from the Devonian. Extant species bear numerous plesiomorphies, the most striking being remnant opisthosomal segmentation. Also, many are all-female parthenogens with broad geographical distributions. Many of the species reported in the present study may represent clones of ancient Gondwana species. Before the present study only a handful of endeostigmatans had been reported from Australia. A key to the families of Endeostigmata is provided in the present paper, along with a review of the Australian fauna of the families Alicorhagiidae (new record), Grandjeanicidae (new record), Oehserchestidae (new record), and Terpnacaridae. Terpnacarus gibbosus (Womersley) is redescribed. A report of the first records of the cosmopolitan parthenogens Alicorhagia usitata Theron et al., Alycosmesis palmata (Oudemans), Stigmalychus veretrum Theron et al., Terpnacarus carolinaensis Theron, and Oehserchestes arboriger (Theron) in Australia is provided, along with a description of the new species Grandjeanicus theroni (Grandjeanicidae). Terpnacarus variolus Shiba and T. glebulentus Theron are junior synonyms of T. gibbosus.
Resumo:
In this paper, we consider testing for additivity in a class of nonparametric stochastic regression models. Two test statistics are constructed and their asymptotic distributions are established. We also conduct a small sample study for one of the test statistics through a simulated example. (C) 2002 Elsevier Science (USA).
Resumo:
We consider a mixture model approach to the regression analysis of competing-risks data. Attention is focused on inference concerning the effects of factors on both the probability of occurrence and the hazard rate conditional on each of the failure types. These two quantities are specified in the mixture model using the logistic model and the proportional hazards model, respectively. We propose a semi-parametric mixture method to estimate the logistic and regression coefficients jointly, whereby the component-baseline hazard functions are completely unspecified. Estimation is based on maximum likelihood on the basis of the full likelihood, implemented via an expectation-conditional maximization (ECM) algorithm. Simulation studies are performed to compare the performance of the proposed semi-parametric method with a fully parametric mixture approach. The results show that when the component-baseline hazard is monotonic increasing, the semi-parametric and fully parametric mixture approaches are comparable for mildly and moderately censored samples. When the component-baseline hazard is not monotonic increasing, the semi-parametric method consistently provides less biased estimates than a fully parametric approach and is comparable in efficiency in the estimation of the parameters for all levels of censoring. The methods are illustrated using a real data set of prostate cancer patients treated with different dosages of the drug diethylstilbestrol. Copyright (C) 2003 John Wiley Sons, Ltd.
Finite mixture regression model with random effects: application to neonatal hospital length of stay
Resumo:
A two-component mixture regression model that allows simultaneously for heterogeneity and dependency among observations is proposed. By specifying random effects explicitly in the linear predictor of the mixture probability and the mixture components, parameter estimation is achieved by maximising the corresponding best linear unbiased prediction type log-likelihood. Approximate residual maximum likelihood estimates are obtained via an EM algorithm in the manner of generalised linear mixed model (GLMM). The method can be extended to a g-component mixture regression model with the component density from the exponential family, leading to the development of the class of finite mixture GLMM. For illustration, the method is applied to analyse neonatal length of stay (LOS). It is shown that identification of pertinent factors that influence hospital LOS can provide important information for health care planning and resource allocation. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The modelling of inpatient length of stay (LOS) has important implications in health care studies. Finite mixture distributions are usually used to model the heterogeneous LOS distribution, due to a certain proportion of patients sustaining-a longer stay. However, the morbidity data are collected from hospitals, observations clustered within the same hospital are often correlated. The generalized linear mixed model approach is adopted to accommodate the inherent correlation via unobservable random effects. An EM algorithm is developed to obtain residual maximum quasi-likelihood estimation. The proposed hierarchical mixture regression approach enables the identification and assessment of factors influencing the long-stay proportion and the LOS for the long-stay patient subgroup. A neonatal LOS data set is used for illustration, (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
In this article we investigate the asymptotic and finite-sample properties of predictors of regression models with autocorrelated errors. We prove new theorems associated with the predictive efficiency of generalized least squares (GLS) and incorrectly structured GLS predictors. We also establish the form associated with their predictive mean squared errors as well as the magnitude of these errors relative to each other and to those generated from the ordinary least squares (OLS) predictor. A large simulation study is used to evaluate the finite-sample performance of forecasts generated from models using different corrections for the serial correlation.
Resumo:
In variable charge soils, anion retention and accumulation through adsorption at exchange sites is a competitive process. The objectives of this study in the wet tropics of far north Queensland were to investigate (i) whether the pre-existing high sulphate in variable charge soils had any impact on the retention of chloride and nitrate, derived mostly from the applied fertilizer; and (ii) whether chloride competed with nitrate during the adsorption processes. Soil cores up to 12.5 m depth were taken from seven sites, representing four soil types, in the Johnstone River Catchment. Six of these sites had been under sugarcane (Saccharum officinarum-S) cultivation for at least 50 years and one was an undisturbed rainforest. The cores were segmented at 1.0 m depth increments, and subsamples were analysed for nitrate-N, cation (CEC)- and anion-exchange capacities (AEC), pH, exchangeable cations (Ca, Mg, K, Na), soil organic C (SOC), electrical conductivity (EC), sulphate-S, and chloride. Sulphate-S load in 1-12 m depth under cropping ranged from 9.4 to 73.9 t ha(-1) (mean= 40 t ha(-1)) compared with 74.4 t ha(-1) in the rainforest. Chloride load under cropping ranged from 1.5 to 9.6 t ha(-1) (mean= 4.9 t ha(-1)) compared to 0.9 t ha(-1) in the rainforest, and the nitrate-N load from 113 to 2760 kg ha(-1) (mean = 910 kg ha(-1)) under cropping compared to 12 kg ha(-1) in the rainforest. Regardless of the soil type, the total chloride or nitrate-N input in fertilisers was 7.5 t ha(-1), during the last 50 years. Sulphate-S distribution in soil profiles decreased with depth at >2 m, whereas bulges of chloride or nitrate-N were observed at depths >2 m. This suggests that chloride or nitrate adsorption and retention increased with decreasing sulphate dominance. Abrupt decreases in equivalent fraction of sulphate (EFSO4), at depths >2 m, were accompanied by rapid increases in equivalent fraction of chloride (EFCl), followed by nitrate (EFNO3). The stepwise regression for EFCl and EFNO3 indicated that nitrate retention was reduced by the pre-existing sulphate and imported chloride, whereas only sulphate reduced chloride adsorption. The results indicate that chloride and nitrate adsorption and retention occurred, in the order chloride>nitrate, in soils containing large amounts of sulphate under approximately similar total inputs of N- and Cl-fertilisers. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Background and Objective: To examine if commonly recommended assumptions for multivariable logistic regression are addressed in two major epidemiological journals. Methods: Ninety-nine articles from the Journal of Clinical Epidemiology and the American Journal of Epidemiology were surveyed for 10 criteria: six dealing with computation and four with reporting multivariable logistic regression results. Results: Three of the 10 criteria were addressed in 50% or more of the articles. Statistical significance testing or confidence intervals were reported in all articles. Methods for selecting independent variables were described in 82%, and specific procedures used to generate the models were discussed in 65%. Fewer than 50% of the articles indicated if interactions were tested or met the recommended events per independent variable ratio of 10: 1. Fewer than 20% of the articles described conformity to a linear gradient, examined collinearity, reported information on validation procedures, goodness-of-fit, discrimination statistics, or provided complete information on variable coding. There was no significant difference (P >.05) in the proportion of articles meeting the criteria across the two journals. Conclusion: Articles reviewed frequently did not report commonly recommended assumptions for using multivariable logistic regression. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Background: Protein tertiary structure can be partly characterized via each amino acid's contact number measuring how residues are spatially arranged. The contact number of a residue in a folded protein is a measure of its exposure to the local environment, and is defined as the number of C-beta atoms in other residues within a sphere around the C-beta atom of the residue of interest. Contact number is partly conserved between protein folds and thus is useful for protein fold and structure prediction. In turn, each residue's contact number can be partially predicted from primary amino acid sequence, assisting tertiary fold analysis from sequence data. In this study, we provide a more accurate contact number prediction method from protein primary sequence. Results: We predict contact number from protein sequence using a novel support vector regression algorithm. Using protein local sequences with multiple sequence alignments (PSI-BLAST profiles), we demonstrate a correlation coefficient between predicted and observed contact numbers of 0.70, which outperforms previously achieved accuracies. Including additional information about sequence weight and amino acid composition further improves prediction accuracies significantly with the correlation coefficient reaching 0.73. If residues are classified as being either contacted or non-contacted, the prediction accuracies are all greater than 77%, regardless of the choice of classification thresholds. Conclusion: The successful application of support vector regression to the prediction of protein contact number reported here, together with previous applications of this approach to the prediction of protein accessible surface area and B-factor profile, suggests that a support vector regression approach may be very useful for determining the structure-function relation between primary sequence and higher order consecutive protein structural and functional properties.
Resumo:
Studies have shown that increased arterial stiffening can be an indication of cardiovascular diseases like hypertension. In clinical practice, this can be detected by measuring the blood pressure (BP) using a sphygmomanometer but it cannot be used for prolonged monitoring. It has been established that pulse wave velocity (PWV) is a direct measure of arterial stiffening but its usefulness is hampered by the absence of non-invasive techniques to estimate it. Pulse transit time (PTT) is a simple and non-invasive method derived from PWV. However, limited knowledge of PTT in children is found in the present literature. The aims of this study are to identify independent variables that confound PTT measure and describe PTT regression equations for healthy children. Therefore, PTT reference values are formulated for future pathological studies. Fifty-five Caucasian children (39 male) aged 8.4 +/- 2.3 yr (range 5-12 yr) were recruited. Predictive equations for PTT were obtained by multiple regressions with age, vascular path length, BP indexes and heart rate. These derived equations were compared in their PWV equivalent against two previously reported equations and significant agreement was obtained (p < 0.05). Findings herein also suggested that PTT can be useful as a continuous surrogate BP monitor in children.