15 resultados para Sediment-Transport
em University of Queensland eSpace - Australia
Resumo:
The effect of acceleration skewness on sheet flow sediment transport rates (q) over bar (s) is analysed using new data which have acceleration skewness and superimposed currents but no boundary layer streaming. Sediment mobilizing forces due to drag and to acceleration (similar to pressure gradients) are weighted by cosine and sine, respectively, of the angle phi(.)(tau)phi(tau) = 0 thus corresponds to drag dominated sediment transport, (q) over bar (s)similar to vertical bar u(infinity)vertical bar u(infinity), while phi(tau) = 90 degrees corresponds to total domination by the pressure gradients, (q) over bar similar to du(infinity)/dt. Using the optimal angle, phi = 51 degrees based on that data, good agreement is subsequently found with data that have strong influence from boundary layer streaming. Good agreement is also maintained with the large body of U-tube data simulating sine waves with superimposed currents and second-order Stokes waves, all of which have zero acceleration skewness. The recommended model can be applied to irregular waves with arbitrary shape as long as the assumption negligible time lag between forcing and sediment transport rate is valid. With respect to irregular waves, the model is much easier to apply than the competing wave-by-wave models. Issues for further model developments are identified through a comprehensive data review.
Resumo:
This paper proposes a theoretical explanation of the variations of the sediment delivery ratio (SDR) versus catchment area relationships and the complex patterns in the behavior of sediment transfer processes at catchment scale. Taking into account the effects of erosion source types, deposition, and hydrological controls, we propose a simple conceptual model that consists of two linear stores arranged in series: a hillslope store that addresses transport to the nearest streams and a channel store that addresses sediment routing in the channel network. The model identifies four dimensionless scaling factors, which enable us to analyze a variety of effects on SDR estimation, including (1) interacting processes of erosion sources and deposition, (2) different temporal averaging windows, and (3) catchment runoff response. We show that the interactions between storm duration and hillslope/channel travel times are the major controls of peak-value-based sediment delivery and its spatial variations. The interplay between depositional timescales and the travel/residence times determines the spatial variations of total-volume-based SDR. In practical terms this parsimonious, minimal complexity model could provide a sound physical basis for diagnosing catchment to catchment variability of sediment transport if the proposed scaling factors can be quantified using climatic and catchment properties.
Resumo:
New experimental laboratory data are presented on swash overtopping and sediment overwash on a truncated beach, approximating the conditions at the crest of a beach berm or inter-tidal ridge-runnel. The experiments provide a measure of the uprush sediment transport rate in the swash zone that is unaffected by the difficulties inherent in deploying instrumentation or sediment trapping techniques at laboratory scale. Overtopping flow volumes are compared with an analytical solution for swash flows as well as a simple numerical model, both of which are restricted to individual swash events. The analytical solution underestimates the overtopping volume by an order of magnitude while the model provides good overall agreement with the data and the reason for this difference is discussed. Modelled flow velocities are input to simple sediment transport formulae appropriate to the swash zone in order to predict the overwash sediment transport rates. Calculations performed with traditional expressions for the wave friction factor tend to underestimate the measured transport. Additional sediment transport calculations using standard total load equations are used to derive an optimum constant wave friction factor of f(w)=0.024. This is in good agreement with a broad range of published field and laboratory data. However, the influence of long waves and irregular wave run-up on the overtopping and overwash remains to be assessed. The good agreement between modelled and measured sediment transport rates suggests that the model provides accurate predictions of the uprush sediment transport rates in the swash zone, which has application in predicting the growth and height of beach berms. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
New data on the settling velocity of artificial sediments and natural sands at high concentrations are presented. The data are compared with a widely used semiempirical Richardson and Zaki equation (Trans. Inst. Chem. Eng. 32 (1954) 35), which gives an accurate measure of the reduction in velocity as a function of concentration and an experimentally determined empirical power n. Here, a simple method of determining n is presented using standard equations for the clear water settling velocity and the seepage flow within fixed sediment beds. The resulting values for n are compared against values derived from new and existing laboratory data for beach and filter sands. For sands, the appropriate values of n are found to differ significantly from those suggested by Richardson and Zaki for spheres, and are typically larger, corresponding to a greater reduction in settling velocity at high concentrations. For fine and medium sands at concentrations of order 0.4, the hindered settling velocity reduces to about 70% of that expected using values of n derived for spheres. At concentrations of order 0.15, the hindered settling velocity reduces to less than half of the settling velocity in clear water. These reduced settling velocities have important implications for sediment transport modelling close to, and within, sheet flow layers and in the swash zone.
Resumo:
Measurements in the macro-tidal Daly Estuary show that the presence of an undular tidal bore contributed negligibly to the dissipation of tidal energy. No recirculation bubble was observed between a trough and the following wave crest in the lee waves following the undular bore. This differs to stationary undular bores in laboratory experiments at larger Froude numbers where a recirculation bubble exists. Secondary motions and the turbulence generated by the undular bore had no measurable influence on the sediment transport. This situation contrasts with the intense sediment resuspension observed in breaking tidal bores. The tidally averaged sediment budget in the Daly Estuary was controlled by the asymmetry of tidal currents. The undular bore may widen the river by breaking along the banks that it undercuts, leading to bank slippage. A patch of river-wide macro-turbulence of 3-min duration occurred about 20 min after the passage of the bore during accelerating tidal currents. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The sedimentation rate of sand grains in the hindered settling regime has been considered to assess particle shape effects. The behaviour of various particulate systems involving sand has been compared with the widely used Richardson-Zaki expression. The general form of the expression is found to hold, in as much as remaining as a suitable means to describe the hindered settling of irregular particles. The sedimentation exponent n in the Richardson-Zaki expression is found to be significantly larger for natural sand grains than for regular particles. The hindered settling effect is therefore greater, leading to lower concentration gradients than expected. The effect becomes more pronounced with increasing particle irregularity. At concentrations around 0.4, the hindered settling velocity of fine and medium natural sands reduces to about 70% of the value predicted using existing empirical expressions for n. Using appropriate expressions for the fluidization velocity and the clear water settling velocity, a simple method is discussed to evaluate the sedimentation exponent and to determine the hindered settling effect for sands of various shapes.
Field observations of instantaneous water slopes and horizontal pressure gradients in the swash-zone
Resumo:
Field observations of instantaneous water surface slopes in the swash zone are presented. For free-surface flows with a hydrostatic pressure distribution the surface slope is equivalent to the horizontal pressure gradient. Observations were made using a novel technique which in its simplest form consists of a horizontal stringline extending seaward from the beach face. Visual observation, still photography or video photography is then sufficient to determine the surface slope where the free-surface cuts the line or between reference points in the image. The method resolves the mean surface gradient over a cross-shore distance of 5 m or more to within +/- 0.001, or 1/20th -1/100th of typical beach gradients. In addition, at selected points and at any instant in time during the swash cycle, the water surface slope can be determined exactly to be dipping either seaward or landward. Close to the location of bore collapse landward dipping water surface slopes of order 0.05-0.1 occur over a very small region (order 0.5 m) at the blunt or convex leading edge of the swash. In the middle and upper swash the water surface slope at this leading edge is usually very close to horizontal or slightly seaward. Behind the leading edge, the water surface slope was observed to be very close to horizontal or dipping seaward at all times throughout the swash uprush. During the backwash the water surface slope was observed to be always dipping seaward, approaching the beach slope, and remained seaward until a new uprush edge or incident bore passed any particular cross-shore location of interest. The observations strongly Suggest that the swash boundary layer is subject to an adverse pressure gradient during uprush and a favourable pressure gradient during the backwash. Furthermore, assuming Euler's equations are a good approximation in the swash, the observations also show that the total fluid acceleration is negative (offshore) for almost the whole of the uprush and for the entire backwash. The observations are contrary to recent work suggesting significant shoreward directed accelerations and pressure gradients occur in the swash (i.e., delta u/delta t > 0 similar to delta p/delta x < 0), but consistent with analytical and numerical solutions for swash uprush and backwash. The results have important implications for sediment transport modelling in the swash zone.
Resumo:
This study documents two different modes of berm development: (I) vertical growth at spring tides or following significant beach cut due to substantial swash overtopping, and (2) horizontal progradation at neap tides through the formation of a proto-berm located lower and further seaward of the principal berm. Concurrent high-frequency measurements of bed elevation and the associated wave runup distribution reveal the details of each of these berm growth modes. In mode I sediment is eroded from the inner surf and lower swash zone where swash interactions are prevalent. The net transport of this sediment is landward only, resulting in accretion onto the upper beach face and over the berm crest. The final outcome is a steepening of the beach face gradient, a change in the profile shape towards concave and rapid vertical and horizontal growth of the berm. In mode 2 sediment is eroded from the lower two-thirds of the active swash zone during the rising tide and is transported both landward and seaward. On the falling tide sediment is eroded from the inner surf and transported landward to backfill the zone eroded on the rising tide. The net result is relatively slow steepening of the beach face, a change of the profile shape towards convex, and horizontal progradation through the formation of a neap berm. The primary factor determining which mode of berm growth occurs is the presence or absence of swash overtopping at the time of sediment accumulation on the beach face. This depends on the current phase of the spring-neap tide cycle, the wave runup height (and indirectly offshore wave conditions) and the height of the pre-existing berm. A conceptual model for berm morphodynamics is presented, based on sediment transport shape functions measured during the two modes of berm growth. (c) 2006 Elsevier B.V. All rights reserved.