5 resultados para Sclerotinia Sclerotiorum

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study confirms that Australian isolates of Sclerotinia minor can produce fertile apothecia and further demonstrates that ascospores collected from these apothecia are pathogenic to sunflower (Helianthus annuus). Sunflower is a known host of the related fungus Sclerotinia sclerotiorum and is grown in some regions where S. minor is known to occur. Head rot symptoms were produced following inoculation with S. minor ascospores. Predictive modeling using CLIMEX software suggested that conditions suitable for carpogenic germination of S. minor probably occur in Australia particularly in southern regions. Carpogenic germination is probably a rare event in northern regions and, if it does occur, probably does not coincide with anthesis in sunflower crops, therefore allowing disease escape.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A variety of morphological and molecular characters were compared for their ability to separate the three plant pathogenic species that comprise the genus Sclerotinia: Sclerotinia sclerotiorum, Sclerotinia minor and Sclerotinia trifoliorum. Restriction fragment length polymorphism ( RFLP) probes generated from cloned genomic DNA fragments of S. sclerotiorum were used for accurate species designation and to compare against other markers, before further use in population genetics and breeding studies. Other characters used for comparison included host species, sclerotial diameters, ascospore morphism and breeding type. Several RFLP probes, either singly or in combination, enabled clear separation of the Sclerotinia species. Sclerotial diameters remain a good criterion for separating S. minor from S. sclerotiorum and S. trifoliorum, but the host species criterion was inadequate for accurately differentiating the 3 species of Sclerotinia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sclerotinia species are sexually reproducing ascomycetes. In the past S. minor and S. sclerotiorum, have been assumed to be homothallic because of the self-fertility of colonies derived from single ascospores. S. trifoliorum has previously been shown to be bipolar heterothallic due to the presence of four self-fertile and four self-sterile ascospores within a single ascus [Uhm, J.Y., Fujii, H., 1983a. Ascospore dimorphism in Sclerotinia trifoliorum and cultural characters of strains from different-sized spores. Phytopathology 73: 565-569]. However, isolates of S. minor and S. sclerotiorum were proven to be homothallic ascomycetes, by self-fertility of all eight ascospores within an ascus. Apothecia were raised from all eight ascospores of a single tetrad from four isolates of S. minor and from an isolate of S. sclerotiorum, indicating that inbreeding may be the predominant breeding mechanism of S. minor. Ascospores from asci of S. minor and S. sclerotiorum were predominantly monomorphic, but rare examples of ascospore dimorphism similar to S. trifoliorum were found. (c) 2006 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lentil is a self-pollinating diploid (2n = 14 chromosomes) annual cool season legume crop that is produced throughout the world and is highly valued as a high protein food. Several abiotic stresses are important to lentil yields world wide and include drought, heat, salt susceptibility and iron deficiency. The biotic stresses are numerous and include: susceptibility to Ascochyta blight, caused by Ascochyta lentis; Anthracnose, caused by Colletotrichum truncatum; Fusarium wilt, caused by Fusarium oxysporum; Sclerotinia white mold, caused by Sclerotinia sclerotiorum; rust, caused by Uromyces fabae; and numerous aphid transmitted viruses. Lentil is also highly susceptible to several species of Orabanche prevalent in the Mediterranean region, for which there does not appear to be much resistance in the germplasm. Plant breeders and geneticists have addressed these stresses by identifying resistant/tolerant germplasm, determining the genetics involved and the genetic map positions of the resistant genes. To this end progress has been made in mapping the lentil genome and several genetic maps are available that eventually will lead to the development of a consensus map for lentil. Marker density has been limited in the published genetic maps and there is a distinct lack of co-dominant markers that would facilitate comparisons of the available genetic maps and efficient identification of markers closely linked to genes of interest. Molecular breeding of lentil for disease resistance genes using marker assisted selection, particularly for resistance to Ascochyta blight and Anthracnose, is underway in Australia and Canada and promising results have been obtained. Comparative genomics and synteny analyses with closely related legumes promises to further advance the knowledge of the lentil genome and provide lentil breeders with additional genes and selectable markers for use in marker assisted selection. Genomic tools such as macro and micro arrays, reverse genetics and genetic transformation are emerging technologies that may eventually be available for use in lentil crop improvement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The fungi Sclerotinia minor and S. sclerotiorum are the causal agents of two similar diseases of peanut (Arachis hypogaea L.). Both diseases cause significant losses in the Australian peanut industry. Development of cultivars with resistance to Sclerotinia will be an important component of integrated control. The aims of this project are to generate information that will assist in breeding for Sclerotinia resistance in peanut: to identify Sclerotinia-resistant peanut germplasm, to understand the inheritance and estimate heritability of resistance, and to test the effectiveness of identified sources of resistance against both S. minor and S. sclerotiorum. This study has clearly established that material that shows resistance to S. minor in the USA is resistant to S. minor and likely to be resistant to S. sclerotiorum in Australia. The high level of resistance to both S. minor and S. sclerotiorum in germplasm from Texas, particularly TxAG-4, was confirmed. VA 93B showed good resistance in the field, which is primarily due to the open bush type rather than physiological resistance. Physiological resistance to S. minor was also identified in a cultivar and a landrace from Indonesia and a rust-resistant line from Queensland. All germplasm found to have high physiological resistance to S. minor belonged to the Spanish type. Inheritance of physiological resistance to S. minor was studied using a Generation Means Analysis (GMA) of the cross TxAG-4/VA 93B and its reciprocal. The broad-sense heritability of physiological resistance on a single plant basis was estimated at 47%, much higher than earlier estimates obtained in field studies. The average gene action of Sclerotinia resistance genes from TxAG-4 was found to be additive. No dominance effects were detected in the GMA. A small but significant reciprocal effect between TxAG-4 and VA 93B indicated that VA 93B passed on some physiological resistance maternally. An experiment was conducted to confirm the value of resistance against both S. minor and S. sclerotiorum. TxAG-4 was found to have physiological resistance to both S. minor and S. sclerotiorum. This resistance was expressed against both Sclerotinia species by progeny that were selected for resistance to S. minor. On the basis of the information obtained, the comparative advantages of 3 strategies for Sclerotinia-resistant cultivar development are discussed: (1) introduction of germplasm; (2) recurrent backcrossing with screening and crossing in the BCnF1 generation; and (3) pedigree selection. At present, introduction and backcrossing are recommended as the preferred strategies.