203 resultados para Science Culture
em University of Queensland eSpace - Australia
Resumo:
Purification of recombinant human growth hormone (rhGH) from Chinese hamster ovary (CHO) cell culture supernatant by Gradiflow large-scale electrophoresis is described. Production of rhGH in CHO cells is an alternative to production in Escherichia coli, with the advantage that rhGH is secreted into protein-free production media, facilitating a more simple purification and avoiding resolubilization of inclusion bodies and protein refolding. As an alternative to conventional chromatography, rhGH was purified in a one-step procedure using Gradiflow technology. Clarified culture supernatant containing rhGH was passed through a Gradiflow BF200 and separations were performed over 60 min using three different buffers of varying pH. Using a 50 mM Tris/Hepes buffer at pH 7.5 together with a 50 kDa separation membrane, rhGH was purified to approximately 98% purity with a yield of 90%. This study demonstrates the ability of Gradiflow preparative electrophoresis technology to purify rhGH from mammalian cell culture supernatant in a one-step process with high purity and yield. As the Gradiflow is directly scalable, this study also illustrates the potential for the inclusion of the Gradiflow into bioprocesses for the production of clinical grade rhGH and other therapeutic proteins. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Little is known about the responses of Australian plants to excess metal, including Mn. It is important to remedy this lack of information so that knowledgeable decisions can be made about managing Mn contaminated sites where inhabited by Australian vegetation. Acacia holosericea, Melaleuca leucadendra, Eucalyptus crebra and Eucalyptus camaldulensis were grown in dilute solution culture for 10 weeks. The seedlings ( 42 days old) were exposed to six Mn treatments viz., 1, 8, 32, 128, 512 and 2048 muM. The order of tolerance to toxic concentrations of Mn was A. holosericea congruent to = E. crebra < M. leucadendra < E. camaldulensis, the critical external concentrations being approximately 5.1, 5.0, 21 and 330 muM, respectively. The critical tissue Mn concentrations for the youngest fully expanded leaf and total shoots were, respectively, 265 and 215 mug g(-1) DM for A. holosericea, 445 and 495 mug g(-1) DM for M. leucadendra, 495 and 710 mug g(-1) DM for E. crebra and 7230 and 6510 mug g(-1) DM for E. camaldulensis. The high tolerance of E. camaldulensis ( as opposed to the sensitivity of E. crebra) to excess Mn raises concern about fauna feeding on the plant and is consistent with hypotheses suggesting the Eucalyptus subgenus Symphomyrtus is particularly tolerant of stress, including excess Mn. The results from this paper provide the first comprehensive combination of growth responses, critical external concentrations, critical tissue concentrations and plant toxicity symptoms for three important Australian genera, viz., Eucalyptus, Acacia and Melaleuca, for use in the management of Mn toxic sites.
Resumo:
Pollution by polycyclic aromatic hydrocarbons(PAHs) is widespread due to unsuitable disposal of industrial waste. They are mostly defined as priority pollutants by environmental protection authorities worldwide. Phenanthrene, a typical PAH, was selected as the target in this paper. The PAH-degrading mixed culture, named ZM, was collected from a petroleum contaminated river bed. This culture was injected into phenanthrene solutions at different concentrations to quantify the biodegradation process. Results show near-complete removal of phenanthrene in three days of biodegradation if the initial phenanthrene concentration is low. When the initial concentration is high, the removal rate is increased but 20%-40% of the phenanthrene remains at the end of the experiment. The biomass shows a peak on the third day due to the combined effects of microbial growth and decay. Another peak is evident for cases with a high initial concentration, possibly due to production of an intermediate metabolite. The pH generally decreased during biodegradation because of the production of organic acid. Two phenomenological models were designed to simulate the phenanthrene biodegradation and biomass growth. A relatively simple model that does not consider the intermediate metabolite and its inhibition of phenanthrene biodegradation cannot fit the observed data. A modified Monod model that considered an intermediate metabolite (organic acid) and its inhibiting reversal effect reasonably depicts the experimental results.
Resumo:
The aim of this study is to determine whether subpopulations of smooth muscle cells (SMC). as distinguished by variations in contractile and cytoskeletal proteins, appear in the neointima at different times after vascular injury, and/or whether subpopulations develop during serial passaging of these cells. Rat aortae and rabbit carotid arteries were injured with a 2F Fogarty balloon catheter and cultures established from the resulting neointima and the media 2, 6, 12, 16 and 24 weeks later. Cultures were examined at passages 1-5 and subpopulations of SMC categorised by intensity of staining for each protein by immunohistochemistry. Two populations of SMC with different staining intensities ('+ +', '+') were observed for each of the following proteins: alpha -SM actin, SM-myosin, desmin and vimentin. Populations without these proteins were also found. Changes in the percentages of cells expressing these proteins were transitory, indicating that the populations were not limited to a particular tissue (neointima or media), time after injury or passage number. One exception was found in rabbit cultures where the number of desmin-expressing cells quickly decreased with both time after injury and time in culture. Subpopulations of SMC were found at all times after injury in the media and neointima of rat and rabbit arteries, and after multiple passage of these cells. There was no pattern of development of one population suggesting that either no subpopulation has a proliferative or migratory advantage over others, or that only one population exists: that is capable of diverse phenotypic changes. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Despite reports that boron (B) requirements differ among plant species there is a shortage of critical evidence to demonstrate unequivocally whether species differ in internal or external B requirements or both. The present research was conducted to establish the external and internal B requirements of three contrasting species, a woody dicot (marri), an herbaceous dicot (sunflower) and a monocot (wheat) using B-buffered solution culture. Boron-buffered solution culture provided satisfactory control of external B concentrations ranging from 0.04 to 30 muM throughout the 20- (sunflower and wheat) or 40-day (marri) growth period. At low external B concentrations (less than or equal to 0.13 muM), the growth of marri and sunflower was severely depressed but by contrast the vegetative growth of wheat plants was satisfactory and free of B deficiency symptoms. Marri and sunflower plants achieved total maximum shoot growth at greater than or equal to1.2 muM B in solutions while wheat plants did so at greater than or equal to 0.6 muM B. The critical B concentrations (mg kg(-1) dry matter) in the youngest open leaf blades of marri, sunflower and wheat plants were 17.9, 19.7 and 1.2 on 20, 10 and 10 days after transplanting (DAT), respectively. Lower internal and external B requirements of wheat were matched by a lower uptake rate of B compared to marri and sunflower.
Resumo:
A frequently desired outcome when rehabilitating Zn toxic sites in Australia is to establish a self-sustaining native ecosystem. Hence, it is important to understand the tolerance of Australian native plants to high concentrations of Zn. Very little is known about the responses of Australian native plants, and trees in particular, to toxic concentrations of Zn. Acacia holosericea, Eucalyptus camaldulensis and Melaleuca leucadendra plants were grown in dilute solution culture for 10 weeks. The seedlings (42 days old) were exposed to six Zn treatments viz., 0.5, 5, 10, 25, 50 and 100 muM. The order of tolerance to toxic concentrations of Zn was E. camaldulensis > A. holosericea > M. leucadendra, the critical external concentrations being approximately 20, 12 and 1.5 muM, respectively. Tissue Zn concentrations increased as solution Zn increased for all species. Root tissue concentrations were higher than shoot tissue concentrations at all solution Zn concentrations. The critical tissue Zn concentrations were approximately 85 and 110 mug g(-1) DM for M. leucadendra, 115 and 155 mug g(-1) DM for A. holosericea and 415 and 370 mug g(-1) DM for E. camaldulensis for the youngest fully expanded leaf and total shoots, respectively. The results from this paper provide the first comprehensive combination of growth responses, critical external concentrations, critical tissue concentrations and plant toxicity symptoms for three important Australian genera, viz., Eucalyptus, Acacia and Melaleuca, for use in the rehabilitation of potentially Zn toxic sites.
Resumo:
Human V alpha 24 natural killer T (V alpha 24NKT) cells are activated by -glycosylceramide-pulsed dendritic cells (DCs) in a CDld-dependent and T-cell receptor-mediated manner. There are two major subpopulations of V alpha 24NKT cells, CD4(-) CD8(-) V alpha 24NKT and CD4(+) V alpha 24NKT cells. We have recently shown that activated CD4(-) CD8 V alpha 24NKT cells have cytotoxic activity against DCs, but knowledge of the molecules responsible for cytotoxicity of V alpha 24NKT cells is currently limited. We aimed to investigate whether CD4(+) V alpha 24NKT cells also have cytotoxic activity against DCs and to determine the mechanisms underlying any observed cytotoxic activity. We demonstrated that activated CD4(+) V alpha 24NKT cells [CD40 ligand (CD40L) -positive] have cytotoxic activity against DCs (strongly CD40-positive), but not against monocytes (weakly CD40-positive) or phytohaemagglutinin blast T cells (CD40-negative), and that apoptosis of DCs significantly contributes to the observed cytotoxicity. The apoptosis of DCs following culture with activated CD4(+) V alpha 24NKT cells, but not with resting CD4(+) V alpha 24NKT cells (CD40L-negative), was partially inhibited by anti-CD40L mAb, Direct ligation of CD40 on the DCs by the anti-CD40 antibody also induced apoptosis of DCs. Our results suggest that CD40-CD40L interaction plays an important role in the induction of apoptosis of DCs following culture with activated CD4+ Va24NKT cells. The apoptosis of DCs from normal donors. triggered by the CD40-CD40L interaction, may contribute to the homeostatic regulation of the normal human immune system, preventing the interminable activation of activated CD4(+) V alpha 24NKT cells by virtue of apoptosis of DCs.
Resumo:
The flock-level sensitivity of pooled faecal culture and serological testing using AGID for the detection of ovine Johne's disease-infected flocks were estimated using non-gold-standard methods. The two tests were compared in an extensive field trial in 296 flocks in New South Wales during 1998. In each flock, a sample of sheep was selected and tested for ovine Johne's disease using both the AGID and pooled faecal culture. The flock-specificity of pooled faecal culture also was estimated from results of surveillance and market-assurance testing in New South Wales. The overall flock-sensitivity of pooled faecal culture was 92% (95% CI: 82.4 and 97.4%) compared to 61% (50.5 and 70.9%) for serology (assuming that both tests were 100% specific). In low-prevalence flocks (estimated prevalence
Effect of time of harvest of budded virus on the selection of baculovirus FP mutants in cell culture
Resumo:
Rapid formation and selection of FP (few polyhedra) mutants occurs during serial passaging of Helicoverpa armigera nucleopolyhedrovirus (HaSNPV) in insect cell culture. The production of HaSNPV for use as biopesticides requires the passaging of the virus over a number of passages to produce enough virus inoculum for large-scale fermentation. During serial passaging in cell culture, FP mutants were rapidly selected, resulting in declined productivity and reduced potency of virus. Budded virus (BV) is usually harvested between 72 and 96 h postinfection (hpi) in order to obtain a high titer virus stock. In this study, the effect of tine of harvest (TOH) for BV on the selection rate of HaSNPV FP mutants during serial passaging was investigated. BV were harvested at different times postinfection, and each series was serially passaged for six passages. The productivity and percentage of FP mutants at each passage were determined. It was found that the selection of FP mutants can he reduced by employing an earlier TOH for BV. Serial passaging with BV harvested at 48 hpi showed a slower accumulation of FP mutants compared to that of BV harvested after 48 hpi. Higher cell specific yields were also maintained when BV were harvested at 48 hpi. When BV that were formed between 48 and 96 hpi were harvested and serially passaged, FP mutants quickly dominated the virus population. This suggests that the V formed and released between 48 and 96 hpi are most likely from FP mutant infected cells.