10 resultados para Schubert calculus

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The real-time refinement calculus is a formal method for the systematic derivation of real-time programs from real-time specifications in a style similar to the non-real-time refinement calculi of Back and Morgan. In this paper we extend the real-time refinement calculus with procedures and provide refinement rules for refining real-time specifications to procedure calls. A real-time specification can include constraints on, not only what outputs are produced, but also when they are produced. The derived programs can also include time constraints oil when certain points in the program must be reached; these are expressed in the form of deadline commands. Such programs are machine independent. An important consequence of the approach taken is that, not only are the specifications machine independent, but the whole refinement process is machine independent. To implement the machine independent code on a target machine one has a separate task of showing that the compiled machine code will reach all its deadlines before they expire. For real-time programs, externally observable input and output variables are essential. These differ from local variables in that their values are observable over the duration of the execution of the program. Hence procedures require input and output parameter mechanisms that are references to the actual parameters so that changes to external inputs are observable within the procedure and changes to output parameters are externally observable. In addition, we allow value and result parameters. These may be auxiliary parameters, which are used for reasoning about the correctness of real-time programs as well as in the expression of timing deadlines, but do not lead to any code being generated for them by a compiler. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-level language program compilation strategies can be proven correct by modelling the process as a series of refinement steps from source code to a machine-level description. We show how this can be done for programs containing recursively-defined procedures in the well-established predicate transformer semantics for refinement. To do so the formalism is extended with an abstraction of the way stack frames are created at run time for procedure parameters and variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide an axiomatisation of the Timed Interval Calculus, a set-theoretic notation for expressing properties of time intervals. We implement the axiomatisation in the Ergo theorem prover in order to allow the machine-checked proof of laws for reasoning about predicates expressed using interval operators. These laws can be then used in the machine-assisted verification of real-time applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The real-time refinement calculus is an extension of the standard refinement calculus in which programs are developed from a precondition plus post-condition style of specification. In addition to adapting standard refinement rules to be valid in the real-time context, specific rules are required for the timing constructs such as delays and deadlines. Because many real-time programs may be nonterminating, a further extension is to allow nonterminating repetitions. A real-time specification constrains not only what values should be output, but when they should be output. Hence for a program to implement such a specification, it must guarantee to output values by the specified times. With standard programming languages such guarantees cannot be made without taking into account the timing characteristics of the implementation of the program on a particular machine. To avoid having to consider such details during the refinement process, we have extended our real-time programming language with a deadline command. The deadline command takes no time to execute and always guarantees to meet the specified time; if the deadline has already passed the deadline command is infeasible (miraculous in Dijkstra's terminology). When such a realtime program is compiled for a particular machine, one needs to ensure that all execution paths leading to a deadline are guaranteed to reach it by the specified time. We consider this checking as part of an extended compilation phase. The addition of the deadline command restores for the real-time language the advantage of machine independence enjoyed by non-real-time programming languages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We define a language and a predicative semantics to model concurrent real-time programs. We consider different communication paradigms between the concurrent components of a program: communication via shared variables and asynchronous message passing (for different models of channels). The semantics is the basis for a refinement calculus to derive machine-independent concurrent real-time programs from specifications. We give some examples of refinement laws that deal with concurrency.