4 resultados para Schefflera
em University of Queensland eSpace - Australia
Resumo:
Leaves of the subtropical understorey shrub Schefflera arboricola Hayata growing in full sunlight had higher specific leaf weight, higher chlorophyll a/b ratios, lower total chlorophyll content and a threefold higher xanthophyll cycle pigment content than leaves growing in a naturally shaded, but sunfleck-punctuated, environment. A number of measurements, all made in situ and during natural day/night cycles, were taken as follows: current photochemical capacity (F-v/F-m after 10 min dark-adaptation), size and epoxidation state of the xanthophyll cycle, CO2 gas exchange and determination of the D1 synthesis rate. In sun leaves the lowest daily F-v/F-m was found to be approximately 0.6, the change from maximum correlating with an increase in zeaxanthin. Daily changes in zeaxanthin were partly due to de novo synthesis and turnover. We suggest that sun leaves can dissipate most of the excess light energy absorbed safely via the photoprotective xanthophyll cycle. D1 synthesis rates did not correlate with photosynthetic photon flux density or F-v/F-m. The shade leaves had high F-v/F-m values and constant photosynthetic rates throughout the day except during sunflecks, when photosynthetic rates increased and D1 synthesis accelerated, all without a substantial decrease in F-v/F-m. It seems that leaves of S. arboricola adapted to natural shade conditions can use sunflecks to contribute significantly to their productivity. The third leaf type investigated was from greenhouse-grown plants of S. arboricola after exposure to full sunlight. These leaves showed a rapid and large reduction in F-v/F-m (to 0.3), which neither correlated with zeaxanthin formation nor recovered within the same day. From long-term effects following full sunlight exposure of greenhouse-grown plants we suggest that this F-v/F-m reduction actually reflects photodestruction.
Resumo:
The degree and distribution of parasitisation in relation to densities of pink wax scale, Ceroplastes rubens Maskell, on umbrella trees, Schefflera actinophylla (Endl.), in south-eastern Queensland were investigated to determine whether scale outbreaks could be attributed, in part, to low levels of parasitisation. Rates of parasitisation were independent of or inversely dependent on host density, and highly variable, especially at low densities. The absence of density dependent parasitisation may occur as a result of: (i) non-aggregation by parasitoids; (ii) aggregation by parasitoids where parasitisation is limited by intrinsic or extrinsic factors; and/or (iii) high rates of hyperparasitisation.
Resumo:
The spatial pattern of outbreaks of pink wax scale, Ceroplastes rubens Maskell, within and among umbrella trees, Schefflera actinophylla (Endl.), in southeastern Queensland was investigated. Pink wax scale was common on S. actinophylla, with approximately 84% of trees positive for scale and 14% of bees recording outbreak densities exceeding 0.4 adults per leaflet. Highly aggregated distributions of C. rubens occur within and among umbrella trees. Clumped distributions within trees appear to result from variable birth and death rates and limited movement of first instar crawlers. The patchy distribution of pink wax scale among trees is probably a consequence of variation in dispersal success of scale, host and environmental suitability for establishment and rates of biological control. Pink wax scale was more prevalent on trees in roadside positions and in exposed situations, indicating that such trees are more suitable and/or susceptible to scale colonisation.
Resumo:
We investigated some of the factors that may lead to outbreaks of pink wax scale, Ceroplastes rubens Maskell, on umbrella trees, Schefflera actinophylla (Endl.). Estimates of birth and death rates of pink wax scale were high and variable within and among trees; variation in these rates was not related to scale density. Adult fecundity correlated significantly but weakly with adult test length; mean fecundity was 292 eggs per female with a range of 5-1178. Adult test length and its variance decreased weakly with increasing density. Field experiments showed that mortality of C. rubens is greatest during the first 24 hours after hatching when approximately half disappear. The rate of loss decreases over time with 0.3% of initial motile first-instar nymphs surviving to maturity. Rates of loss varied significantly between trees, indicating that some trees are more suitable for scale colonisation and survival.