12 resultados para Scatter
em University of Queensland eSpace - Australia
Resumo:
An approach reported recently by Alexandrov et al (2005 Int. J Imag. Syst. Technol. 14 253-8) on optical scatter imaging, termed digital Fourier microscopy (DFM), represents an adaptation of digital Fourier holography to selective imaging of biological matter. The holographic mode of the recording of the sample optical scatter enables reconstruction of the sample image. The form-factor of the sample constituents provides a basis for discrimination of these constituents implemented via flexible digital Fourier filtering at the post-processing stage. As in dark-field microscopy, the DFM image contrast appears to improve due to the suppressed optical scatter from extended sample structures. In this paper, we present the theoretical and experimental study of DFM using a biological phantom that contains polymorphic scatterers.
Resumo:
OBJECTIVES We sought to determine whether assessment of left ventricular (LV) function with real-time (RT) three-dimensional echocardiography (3DE) could reduce the variation of sequential LV measurements and provide greater accuracy than two-dimensional echocardiography (2DE). BACKGROUND Real-time 3DE has become feasible as a standard clinical tool, but its accuracy for LV assessment has not been validated. METHODS Unselected patients (n = 50; 41 men; age, 64 +/- 8 years) presenting for evaluation of LV function were studied with 2DE and RT-3DE. Test-retest variation was performed by a complete restudy by a separate sonographer within 1 h without alteration of hemodynamics or therapy. Magnetic resonance imaging (MRI) images were obtained during a breath-hold, and measurements were made off-line. RESULTS The test-retest variation showed similar measurements for volumes but wider scatter of LV mass measurements with M-mode and 2DE than 3DE. The average MRI end-diastolic volume was 172 +/- 53 ml; LV volumes were underestimated by 2DE (mean difference, -54 +/- 33; p < 0.01) but only slightly by RT-3DE (-4 +/- 29; p = 0.31). Similarly, end-systolic volume by MRI (91 +/- 53 ml) was underestimated by 2DE (mean difference, -28 +/- 28; p < 0.01) and by RT-3DE (mean difference, -3 +/- 18; p = 0.23). Ejection fraction by MRI was similar by 2DE (p = 0.76) and RT-3DE (p = 0.74). Left ventricular mass (183 +/- 50 g) was overestimated by M-mode (mean difference, 68 +/- 86 g; p < 0.01) and 2DE (16 +/- 57; p = 0.04) but not RT-3DE (0 +/- 38 g; p = 0.94). There was good inter- and intra-observer correlation between RT-3DE by two sonographers for volumes, ejection fraction, and mass. CONCLUSIONS Real-time 3DE is a feasible approach to reduce test-retest variation of LV volume, ejection fraction, and mass measurements in follow-up LV assessment in daily practice. (C) 2004 by the American College of Cardiology Foundation.
Resumo:
The effects of strontium on the solidi. cation mode of hypereutectic aluminium-silicon alloys have been studied. Samples were prepared from an aluminium-17wt% silicon-based alloy and strontium was added at several different concentrations. The development of the microstructure was investigated by cooling curve analysis, interrupted solidi. cation experiments and optical and scanning electron microscopy. It was found that nucleation of primary silicon is suppressed by additions of strontium. The suppressed nucleation results in supersaturation of the liquid prior to nucleation, and an increased growth rate after nucleation. As a result, the silicon crystals become less faceted and more dendritic with increasing strontium additions. Increasing the strontium concentration slightly refined the eutectic spacing and introduced a small amount of fibrous silicon. Electron back-scatter diffraction measurements were performed to determine the crystallographic relation between the primary and eutectic silicon phases. The eutectic silicon in the unmodified alloy does not have any crystallographic relationship with the primary silicon crystals. In contrast, the eutectic silicon crystals in the strontium-modified alloys often share an identical or twin relationship with nearby primary silicon crystals. The incidence of twinning within primary silicon crystals was relatively low and did not appear to increase with strontium additions.
Resumo:
Doped ceria (CeO2,) compounds are fluorite type oxides, which show oxide ionic conductivity higher than yttria stabilized zirconia (YSZ), in oxidizing atmospheres. As a consequence of this, considerable interest has been shown in application of these materials for 'low (500-650 degreesC)' or 'intermediate (650-800 degreesC)' temperature operation, solid oxide fuel cells (SOFCs). In this study, the authors prepared two kinds of nanosize Sm-doped CeO2 particles with different morphologies: one type was round and the other was elongated. Processing these powders with different morphology produced dense materials with very different ionic conducting properties and different nanoscale microstructures. Since both particles are very fine and well dispersed, sintered bodies with high density (relative density >95% of theoretical) could be prepared using both types of powder particles. The electrical conductivity of sintered bodies prepared from these powders with different starting morphologies was very different. Materials prepared from particles having a round shape were much higher than those produced using powders with an elongated morphology. Measured activation energies of the corresponding sintered samples showed a similar trend; round particles (60 kJ/mol), elongated particles (74 kJ/mol). While X-ray diffraction (XRD) profiles of these sintered materials were identical, diffuse scatter was observed in the back.-round of selected area electron diffraction pattern recorded from both sintered bodies. This indicated an underlying structure that appeared to have been influenced by the processing technology. Detailed observation using high-resolution transmission electron microscopy (HR-TEM) revealed that the size of microdomain with ordering of cations in the sintered body made from round shape particles was much smaller than that of the sintered body made from elongated particles. Accordingly, it is concluded that the morphology of doped CeO2 powders strongly influenced the microdomain size and electrolytic properties in the doped CeO2 sintered body. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We report comprehensive trace element and Sr-isotope data for microbial carbonates from the Archaean Mushandike limestone, Masvingo Greenstone Belt, Zimbabwe. The stromatolites have very coherent REE + Y patterns and share the essential shale-normalised characteristics of other Archaean marine precipitates (positive La and Gd anomalies, absence of a negative Cc anomaly and a strongly superchondritic Y/Ho ratio). Mixing models constrain the maximum amount of shale contamination to 0.25-1% and calculated detritus-free carbonate REE + Y systematics require precipitation from seawater. In terms of light-REE over heavy-REE depletion, however, the studied samples are very different from all other known Archaean marine precipitates. In shale-normalised plots, the Mushandike samples yield a negative slope. A very restricted, regional input source of the dissolved load is indicated because normalisation with locally occurring tonalite gneiss REE + Y data yields a pattern closely resembling typical shale-normalised Archaean marine chemical sediments. The disappearance of a negative Eu anomaly when patterns are normalised with local tonalite gneiss strengthens this interpretation. Sr-isotope ratios are strongly correlated with trace element contents and ratios, which explains the modest scatter in Sr-isotope ratios as representing (minor) clastic contamination. Importantly, even the least contaminated samples have very radiogenic initial Sr-87/Sr-86 ratios (0.7184) implying Sr input from an ancient high Rb/Sr source, such as the early Archaean gneisses of south-central Zimbabwe. A local ancient (3.5-3.8 Ga) source is also indicated by previously published Pb-isotope datasets for the Mushandike stromatolites. This is entirely compatible with the occurrence of 3.7-3.8 Ga zircons in quartzites and metapelites from comparably old greenstone belts within less than 150 km of the studied locality. Comparison of the Pb-isotope ratios of the Mushandike stromatolites with 2.7 and 2.6 Ga old stromatolites from the neighbouring, Belingwe Greenstone Belt demonstrates differences in initial isotope composition that relate to the extent of exchange with the open ocean. The development of numerous basins on old continental crust, with water masses variably restricted from the open ocean. suggests a lack of strong vertical topography on this late Archaean craton. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The ACI recommendations for the prevention of cracking of plastic concrete attempt to eliminate such cracking by ensuring that the rate of evaporation from unprotected concrete surfaces does not exceed the estimated rate of bleed water production. The current recommendations, however do not account for the large scatter of the underlying experimental evaporation data nor the effect of altitude on evaporation rate. Ignoring the scatter of the evaporation data frequently leads to an unacceptably high probability that the evaporation rate will exceed the bleed rate. Ignoring the effect of altitude leads to similar high probabilities, but in only a comparatively small number of cases. Simple modifications of the ACI recommendations are suggested that can account for both effects. However; insufficient data on the variability of bleed rates are currently available to allow the scatter of the evaporation data to be accounted for completely.
Resumo:
We discuss the construction of a photometric redshift catalogue of luminous red galaxies (LRGs) from the Sloan Digital Sky Survey (SDSS), emphasizing the principal steps necessary for constructing such a catalogue: (i) photometrically selecting the sample, (ii) measuring photometric redshifts and their error distributions, and (iii) estimating the true redshift distribution. We compare two photometric redshift algorithms for these data and find that they give comparable results. Calibrating against the SDSS and SDSS-2dF (Two Degree Field) spectroscopic surveys, we find that the photometric redshift accuracy is sigma similar to 0.03 for redshifts less than 0.55 and worsens at higher redshift (similar to 0.06 for z < 0.7). These errors are caused by photometric scatter, as well as systematic errors in the templates, filter curves and photometric zero-points. We also parametrize the photometric redshift error distribution with a sum of Gaussians and use this model to deconvolve the errors from the measured photometric redshift distribution to estimate the true redshift distribution. We pay special attention to the stability of this deconvolution, regularizing the method with a prior on the smoothness of the true redshift distribution. The methods that we develop are applicable to general photometric redshift surveys.
Resumo:
Full-field Fourier-domain optical coherence tomography (3F-OCT) is a full-field version of spectral domain/swept source optical coherence tomography. A set of two-dimensional Fourier holograms is recorded at discrete wavenumbers spanning the swept source tuning range. The resultant three-dimensional data cube contains comprehensive information on the three-dimensional spatial properties of the sample, including its morphological layout and optical scatter. The morphological layout can be reconstructed in software via three-dimensional discrete Fourier transformation. The spatial resolution of the 3F-OCT reconstructed image, however, is degraded due to the presence of a phase cross-term, whose origin and effects are addressed in this paper. We present a theoretical and experimental study of the imaging performance of 3F-OCT, with particular emphasis on elimination of the deleterious effects of the phase cross-term.
Resumo:
Combined seasonal to monthly resolution coral skeletal delta(18)O, Sr/Ca, and Mg/Ca records are reported for one modem and two late Holocene Porites lutea corals from a fringing reef at Leizhou Peninsula, the northern coast of the South China Sea (SCS). All the profiles for the period 1989-2000 reveal annual cycles well correlated with instrumental sea surface temperatures (SST), and display broad peaks in summer and narrow troughs in winter, reflecting seasonal growth rate variations. Calibration against instrumental SST yields the following equations: delta(18)O=-0.174(+/- 0.010)xSST(degrees C)-1.02(+/- 0.27) (MSWD=5.8), Sr/Ca-(mmol/mol)=-0.0424(+/- 0.0031)xSST(degrees C)+9.836(+/- 0.082) (MSWD=8.6), and Mg/Ca-(mmol/mol)=0.110(+/- 0.009)XSST(degrees C)+ 1.32(+/- 0.23) (MSWD=55). The scatter in the Mg/Ca-SST relationship is much larger than analytical uncertainties can account for, suggesting the presence of SST-unrelated components in the Mg/Ca variation. Calculated Sr/Ca-SST values for two later Holocene Porites lutea samples (U-series ages similar to 541 BC and similar to 487 AD, respectively) from the same reef suggest that SST in the SCS at similar to 541 BC was nearly as warm as in the 1990s (the warmest decade of the last century), but at similar to 487 AD, it was significantly cooler. This observation is consistent with climatic data reported in Chinese historic documents, confirming that the Sr/Ca-SST relationship is a reliable thermometer. Removing the SST component in the delta(18)O variation based on calculated Sr/Ca-SST values, the residual delta(18)O reflects the deviation of the Holocene seawater delta(18)O from the modem value, which is also a measure of the Holocene sea surface salinity (SSS) or the summer monsoon moisture level in mainland China. Such residual delta(18)O was close to zero at similar to 541 BC and -0.3 parts per thousand at similar to 487 AD, suggesting that it was as wet as in the 1990s at similar to 541 BC but significantly drier at similar to 487 AD in mainland China, which are also consistent with independent historic records. Calculated Mg/Ca-SST values for the two late Holocene corals are significantly lower than the Sr/Ca-SST values and are also in conflict with Chinese historic records, suggesting that coral Mg/Ca is not reliable proxy for SST. At comparable Sr/Ca ranges, fossil corals always display negative Mg/Ca offsets if compared with the modem coral of the same site. We interpret this observation as due to preferential loss of Mg during meteoric dissolution of cryptic Mg-calcite-bearing microbialites in the exposed fossil corals. Microbialites (MgO up to 17%, Sr only 100-300 ppm) are ubiquitous during reef-building processes and their presence in only a trace amount will have a significant impact on coral Mg/Ca ratios without detectable influence on coral Sr/Ca ratios. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The critical process parameter for mineral separation is the degree of mineral liberation achieved by comminution. The degree of liberation provides an upper limit of efficiency for any physical separation process. The standard approach to measuring mineral liberation uses mineralogical analysis based two-dimensional sections of particles which may be acquired using a scanning electron microscope and back-scatter electron analysis or from an analysis of an image acquired using an optical microscope. Over the last 100 years, mathematical techniques have been developed to use this two dimensional information to infer three-dimensional information about the particles. For mineral processing, a particle that contains more than one mineral (a composite particle) may appear to be liberated (contain only one mineral) when analysed using only its revealed particle section. The mathematical techniques used to interpret three-dimensional information belong, to a branch of mathematics called stereology. However methods to obtain the full mineral liberation distribution of particles from particle sections are relatively new. To verify these adjustment methods, we require an experimental method which can accurately measure both sectional and three dimensional properties. Micro Cone Beam Tomography provides such a method for suitable particles and hence, provides a way to validate methods used to convert two-dimensional measurements to three dimensional estimates. For this study ore particles from a well-characterised sample were subjected to conventional mineralogical analysis (using particle sections) to estimate three-dimensional properties of the particles. A subset of these particles was analysed using a micro-cone beam tomograph. This paper presents a comparison of the three-dimensional properties predicted from measured two-dimensional sections with the measured three-dimensional properties.
Resumo:
Typical disturbances of biological environment such as background scatter and refractive index variations have little effect on the size-dependent scattering property of highly refractive nanocrystals, which are potentially attractive optical labels. We report on what is to our knowledge the first investigation of these scattering optical labels, and their sizing, in particular, by imaging at subvideo frame rates and analyzing samples of diamond nanocrystals deposited on a glass substrate in air and in a matrix of weakly scattering polymer. The brightness of a diffraction-limited spot appears to serve as a reliable measure of the particle size in the Rayleigh scattering limit. (c) 2006 Optical Society of America.
Resumo:
Promoted ignition tests and quench tests have been conducted and analysed for 3.2 mm aluminum rods in 99.995% oxygen. Tests have been conducted in oxygen pressures varying from 538 kPa to 773 kPa. Samples that self-extinguished or were quenched were selected for further analysis. The microstructure of the selected samples were analysed by electron microscopy, using energy dispersive spectrometry and electron back-scatter techniques, to identify and visualize, respectively, the species present. The grain structures of these samples were etched, viewed and photographed under polarized light by an optical microscope. From the micrographs produced by the post-test analysis, clearly defined boundaries between the oxide and the melted and resolidified metal have been observed. In both the melted and resolidified metal and the oxide layer, significant numbers of gas bubbles, solid inclusions and several diffuse oxide bubbles have been captured during the cooling process. It is concluded that convective movement is occurring within the molten drop and that analysis of quenched samples provides more useful information on the state of the burning droplet than samples allowed to cool slowly to room temperature. Recommendations are made regarding future investigations into aluminum burning, focusing on the transport of reactants through the liquid oxide layer.