7 resultados para Scanning systems
em University of Queensland eSpace - Australia
Resumo:
The use of modulated temperature differential scanning calorimetry (MTDSC) has provided further insight into the gelatinisation process since it allows the detection of glass transition during gelatinisation process. It was found in this work that the glass transition overlapped with the gelatinisation peak temperature for all maize starch formulations studied. Systematic investigation on maize starch gelatinisation over a range of water-glycerol concentrations with MTDSC revealed that the addition of glycerol increased the gelatinisation onset temperature with an extent that depended on the water content in the system. Furthermore, the addition of glycerol promoted starch gelatinisation at low water content (0.4 g water/g dry starch) and the enthalpy of gelatinisation varied with glycerol concentration (0.73-19.61 J/g dry starch) depending on the water content and starch type. The validities of published gelatinisation models were explored. These models failed to explain the glass transition phenomena observed during the course of gelatinisation and failed to describe the gelatinisation behaviour observed over the water-glycerol concentrations range investigated. A hypothesis for the mechanisms involved during gelatinisation was proposed based on the side chain liquid crystalline polymer model for starch structure and the concept that the order-disorder transition in starch requires that the hydrogen bonds (the major structural element in the granule packing) to be broken before the collapse of order (helix-coil transition) can take place. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the relative photopolymerization efficiency for polymerization of a difunctional acrylate initiated by various N-substituted maleimides in the presence of amine and benzophenone are compared on the basis of a photo-differential scanning calorimetry (photo-DSC) study. The trends in the polymerization rates were obtained from the photopolymerization profiles and expressed in terms of a photoinitiation index, I-p. An N-substituent index, I-s, which indicates whether each N-substituent plays either a positive (when I-s > 1) or a negative (when I-s < 1) role in the initiation process relative to MI (unsubstituted maleimide), was determined. (C) 2003 Society of Chemical Industry.
Resumo:
Dynamic rheological behaviour of starch-honey systems was studied using a strain-controlled rheometer. A dynamic temperature (30-130 degreesC) ramp test was used at 10 rad s(-1) frequency, 1% strain, 2 degreesC min(-1) ramp rate, 25 mm parallel plate, and 1.5 min gap, using Wheaten cornflour(TM) and five honeys to generate 25 formulations (0.34-0.80 g water/g dry starch). G', G, and eta* increased upon gelatinisation, and they reduced as the honey content was increased. For all the formulations, G' was higher than G, and tan 6 was generally less than 1.0. Key gelatinisation characterising temperatures (onset, peak and end) ranged from 96.0 to 122.3 degreesC, but did not vary much (CV < 5%) for each honey irrespective of the concentration. The influence of water, fructose and glucose, singly and in combination, on gelatinisation indices (temperature and rheological parameters) was investigated. An exponential equation was employed to describe the relationship, and relevant parameters were obtained. The consequences of the observations in the study are discussed particularly as they relate to extrusion of such systems, and possible interactions between fructose and glucose in the starch-honey systems. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Increasing interests in the use of starch as biodegradable plastic materials demand, amongst others, accurate information on thermal properties of starch systems particularly in the processing of thermoplastic starch (TPS), where plasticisers (water and glycerol) are added. The specific heat capacity of starch-water-glycerol mixtures was determined within a temperature range of 40-120degreesC. A modulated temperature differential scanning calorimeter (MTDSC) was employed and regression equations were obtained to predict the specific heat capacity as a function of temperature, water and glycerol content for four maize starches of differing amylose content (0 - 85%). Generally, temperature and water content are directly proportional to the specific heat capacity of the systems, but the influence of glycerol content on the thermal property varied according to the starch type.
Gelatinisation of starch in mixtures of sugars. II. Application of differential scanning calorimetry
Resumo:
Differential scanning calorimetry was used to investigate the effect of mixtures of glucose and fructose, and five types of honeys on starch gelatinisation. At a 1:1 starch:water ratio, glucose generally increased the enthalpy (DeltaH(gel)) and temperatures (T-onset, T-peak and T-end) of gelatinisation more than fructose. Upon mixing, DeltaH(gel) of the low-temperature endotherm decreased in comparison to the sole sugars, but was fairly constant (7.7 +/- 0.33 J/g dry starch). DeltaH(gel) of the high-temperature endotherm increased with the fructose content. For both endotherms, the gelatinisation temperatures were unchanged (CV less than or equal to 3%) for the mixtures. With the honeys (moisture, 14.9-18.0%; fructose, 37.2-44.0%; glucose, 28.3-31.9%) added at 1.1-4.4 g per g dry starch, the enthalpy and temperatures of gelatinisation did not vary significantly (CV less than or equal to 6%). Typical thermograms are presented, and the results are interpreted in the light of the various proposed mechanisms for starch gelatinisation in sugar-water systems, total sugar content and possible sugar-sugar interactions. The thermograms were broader in the presence of the sugars and honeys, and a biphasic character was consistently exhibited. The application of an exponential equation to the gelatinisation temperatures of the starch-honey mixtures revealed an opposing influence of fructose and glucose during gelatinisation. The mechanism of starch gelatinisation may be better understood if techniques could be perfected to quantify breakage and formation of hydrogen bonds in the starch granules, and suggested techniques are discussed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The thermal properties of soft and hard wheat grains, cooked in a steam pressure cooker, as a function of cooking temperature and time were investigated by modulated temperature differential scanning calorimetry (MTDSC). Four cooking temperatures (110, 120, 130 and 140 degrees C) and six cooking times (20, 40, 60, 80, 100 and 120 min) for each temperature were studied. It was found that typical non-reversible heat flow thermograms of cooked and uncooked wheat grains consisted of two endothermic baseline shifts localised around 40-50 degrees C and then 60-70 degrees C. The second peaks of non-reversible heat flow thermograms (60-70 degrees C) were associated with starch gelatinisation. The degree of gelatinisation was quantified based on these peaks. In this study, starch was completely gelatinised within 60-80 min for cooking temperatures at 110-120 degrees C and within 20 min for cooking temperatures at 130-140 degrees C. MTDSC detected reversible endothermic baseline shifts in most samples, localised broadly around 48-67 degrees C with changes in heat capacity ranging from 0.02 to 0.06 J/g per degrees C. These reversible endothermic baseline shifts are related to the glass transition, which occurs during starch gelatinisation. Data on the specific heat capacity of the cooked wheat samples are provided. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Modulated temperature differential scanning calorimetry was used to investigate the specific heat capacity (C-p) of 10 Australian honeys within the processing and handling temperatures. The values obtained were found to be different from the literature values at certain temperatures, and are not predictable by the additive model. The C-p of each honey exhibited a cubic relationship (P < 0.001) with the temperature (T, C). In addition, the moisture (M, %), fructose (F, %) and glucose (G, %) contents of the honeys influenced their C-p. The following equation (r(2) = 0.92) was proposed for estimating C-p of honey, and is recommended for use in the honey industry and in research: C = 996.7 + 1.4 x 10(-3)T + 5.6 x 10(-5)T(2) - 2.4 x 10(-7)T(3) - 56.5M - 25.8F - 31.0G + 1.5(M * F) + 1.8(M * G) + 0.8(F * G) - 4.6 x 10(-2) (M * F * G).