12 resultados para Salivary drug concentrations
em University of Queensland eSpace - Australia
Resumo:
Lamotrigine concentrations were measured simultaneously (as far as was feasible) in stimulated and unstimulated saliva samples, and in plasma, from seven adult volunteers over a 32 h period following a single 50 mg dose of the drug, and in 20 children and adolescents during the course of routine antiepileptic therapy. In individuals there was a close correlation between the measurements at least 2 It after ingestion of the drug. Concentrations in stimulated and unstimulated saliva were similar; the stimulation produced little change in the saliva secretion rate. The saliva-to-plasma concentration ratio increased linearly by 0.78% for each 1 mg/L plasma lamotrigine concentration, with a mean value of 48.8% at a plasma lamotrigine concentration of 10 mg/L. With appropriate precautions as to the timing of saliva collections, and a single plasma lamotrigine concentration measurement to calibrate the salivary values in the individual, salivary lamotrigine concentration measurement appears to be a practicable approach to therapeutic drug monitoring. This has significant implications for the elucidation of the pharmacokinetics of lamotrigine in the paediatric population.
Resumo:
Free drug measurement and pharmacodymanic markers provide the opportunity for a better understanding of drug efficacy and toxicity. High-performance liquid chromatography (HPLC)-mass spectrometry (MS) is a powerful analytical technique that could facilitate the measurement of free drug and these markers. Currently, there are very few published methods for the determination of free drug concentrations by HPLC-MS. The development of atmospheric pressure ionisation sources, together with on-line microdialysis or on-line equilibrium dialysis and column switching techniques have reduced sample run times and increased assay efficiency. The availability of such methods will aid in drug development and the clinical use of certain drugs, including anti-convulsants, anti-arrhythmics, immunosuppressants, local anaesthetics, anti-fungals and protease inhibitors. The history of free drug measurement and an overview of the current HPLC-MS applications for these drugs are discussed. Immunosuppressant drugs are used as an example for the application of HPLC-MS in the measurement of drug pharmacodynamics. Potential biomarkers of immunosuppression that could be measured by HPLC-MS include purine nucleoside/nucleotides, drug-protein complexes and phosphorylated peptides. At the proteomic level, two-dimensional gel electrophoresis combined with matrix-assisted laser desorption/ionisation time-of-flight (TOF) MS is a powerful tool for identifying proteins involved in the response to inflammatory mediators. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Background: It is essential for health-care professionals to calculate drug doses accurately. Previous studies have demonstrated that many hospital doctors were unable to accurately convert dilutions (e.g. 1:1000) or percentages (e.g. percentage w/v) of drug concentrations into mass concentrations (e.g. mg/mL). Aims: The aims of the present study were to evaluate the ability of health-care professionals to perform drug dose calculations accurately and to determine their preferred concentration convention when calculating drug doses. Methods: A selection of nurses, medical students, house surgeons, registrars and pharmacists undertook a written survey to assess their ability to perform five drug dose calculations. Participants were also asked which concentration convention they preferred when calculating drug doses. The surveys were marked then analysed for health-care professionals as a whole and then by subgroup analysis to assess the performance of each health-care-professional group. Results: Overall, less than 14% of the surveyed health-care professionals could answer all five questions correctly. Subgroup analysis revealed that health-care pro-fessionals' ability to calculate drug doses were ranked in the following order: registrars approximate to pharmacists > house surgeons > medical students >> nurses. Ninety per cent of health-care professionals preferred to calculate drug doses using the mass concentration convention. Conclusions: Overall, drug dose calculations were performed poorly. Mass concentration was clearly indicated as the preferred convention for calculating drug doses.
Resumo:
Objective-To investigate penetration of a topically applied nonsteroidal anti-inflammatory drug (NSAID) into tissues and synovial fluid. Animals-5 Greyhounds. Procedure-Dogs were anesthetized and microdialysis probes placed in the dermis and gluteal muscle over each coxofemoral (hip) joint. Methylsalicylate (MeSA) was applied topically over the left hip joint. Dialysate and plasma (blood samples from the cephalic and femoral veins) were obtained during the subsequent 5 hours. Dogs were euthanatized, and tissue samples and synovial fluid were collected and analyzed for salicylic acid (SA) and MeSA by use of high-pressure liquid chromatography. Results-SA and MeSA concentrations increased rapidly (< 30 minutes after application) in dialysate obtained from treated dermis. Salicylic acid also appeared in plasma within 30 minutes and reached a plateau concentration after 2 hours, although combined drug concentrations (SA plus MeSA) in plasma obtained from femoral vein samples were twice those measured in plasma obtained from the cephalic vein (SA only). Treated muscle had a progressive decrease in NSAID concentration with increasing depth (SA and MeSA), but it was significantly higher than the concentration in untreated muscle. Substantial amounts of SA and MeSA were also measured in synovial fluid of treated joints. Conclusions and Clinical Relevance-Topically applied NSAIDs can penetrate deeply into tissues and synovial fluid. Local concentrations higher than circulating systemic concentrations are suggestive that direct diffusion and local blood redistribution are contributing to this effect. Systemic blood concentrations may be inadequate to describe regional kinetics of topically applied drugs.
Resumo:
Hydroxychloroquine (HCQ) is an antimalarial drug that is also used as a second-line treatment of rheumatoid arthritis (RA). Clinically, the use of HCQ is characterized by a long delay in the onset of action, and withdrawal of treatment is often a result of inefficacy rather than from toxicity. The slow onset of action can be attributed to the pharmacokinetics (PK) of HCQ, and wide interpatient variability is evident. Tentative relationships between concentration and effect have been made, but to date, no population PK model has been developed for HCQ. This study aimed to develop a population PK model including an estimation of the oral bioavailability of HCQ. In addition, the effects of the coadministration of methotrexate on the PK of HCQ were examined. Hydroxychloroquine blood concentration data were combined from previous pharmacokinetic studies in patients with rheumatoid arthritis. A total of 123 patients were studied, giving the data cohort from four previously published studies. Two groups of patients were included: 74 received hydroxychloroquine (HCQ) alone, and 49 received HCQ and methotrexate (MTX). All data analyses were carried out using the NONMEM program. A one-compartment PK model was supported, rather than a three-compartment model as previously published, probably because of the clustering of concentrations taken at the end of a dosing interval. The population estimate of bioavailability of 0.75 (0.07), n = 9, was consistent with literature values. The parameter values from the final model were: (Cl) over bar = 9.9 +/- 0.4 L/h, (V) over bar 605 +/- 91 L, (k(d)) over bar = 0.77 +/- 0.22 hours(-1), (t(tag)) over bar = 0.44 +/- 0.02 hours. Clearance was not affected by the presence of MTX, and, hence, steady-state drug concentrations and maintenance dosage requirements were similar. A population PK model was successfully developed for HCQ.
Resumo:
The aim of this review is to analyse critically the recent literature on the clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplant recipients. Dosage and target concentration recommendations for tacrolimus vary from centre to centre, and large pharmacokinetic variability makes it difficult to predict what concentration will be achieved with a particular dose or dosage change. Therapeutic ranges have not been based on statistical approaches. The majority of pharmacokinetic studies have involved intense blood sampling in small homogeneous groups in the immediate post-transplant period. Most have used nonspecific immunoassays and provide little information on pharmacokinetic variability. Demographic investigations seeking correlations between pharmacokinetic parameters and patient factors have generally looked at one covariate at a time and have involved small patient numbers. Factors reported to influence the pharmacokinetics of tacrolimus include the patient group studied, hepatic dysfunction, hepatitis C status, time after transplantation, patient age, donor liver characteristics, recipient race, haematocrit and albumin concentrations, diurnal rhythm, food administration, corticosteroid dosage, diarrhoea and cytochrome P450 (CYP) isoenzyme and P-glycoprotein expression. Population analyses are adding to our understanding of the pharmacokinetics of tacrolimus, but such investigations are still in their infancy. A significant proportion of model variability remains unexplained. Population modelling and Bayesian forecasting may be improved if CYP isoenzymes and/or P-glycoprotein expression could be considered as covariates. Reports have been conflicting as to whether low tacrolimus trough concentrations are related to rejection. Several studies have demonstrated a correlation between high trough concentrations and toxicity, particularly nephrotoxicity. The best predictor of pharmacological effect may be drug concentrations in the transplanted organ itself. Researchers have started to question current reliance on trough measurement during therapeutic drug monitoring, with instances of toxicity and rejection occurring when trough concentrations are within 'acceptable' ranges. The correlation between blood concentration and drug exposure can be improved by use of non-trough timepoints. However, controversy exists as to whether this will provide any great benefit, given the added complexity in monitoring. Investigators are now attempting to quantify the pharmacological effects of tacrolimus on immune cells through assays that measure in vivo calcineurin inhibition and markers of immuno suppression such as cytokine concentration. To date, no studies have correlated pharmacodynamic marker assay results with immunosuppressive efficacy, as determined by allograft outcome, or investigated the relationship between calcineurin inhibition and drug adverse effects. Little is known about the magnitude of the pharmacodynamic variability of tacrolimus.
Resumo:
A model to investigate hepatic drug uptake and metabolism in the dog was developed for this study. Catheters were placed in the portal and hepatic veins during exploratory laparotomy to collect pre- and posthepatic blood samples at defined intervals. Drug concentrations in the portal vein were taken to reflect intestinal uptake and metabolism of an p.o. administered drug (propranolol), while differences in drug and metabolite concentrations between portal and hepatic veins reflected hepatic uptake and metabolism. A significant difference in propranolol concentration between hepatic and portal veins confirmed a high hepatic extraction of this therapeutic agent in the dog. This technically uncomplicated model may be used experimentally or clinically to determine hepatic function and metabolism of drugs that may be administered during anaesthesia and surgery.
Resumo:
N-1, N-11-Diethylnorspermine (DENSPM) is a polyamine analog that is currently under investigation as a novel anticancer drug. Although it has shown promising preclinical activity, there has been large variation in responsiveness reported between different human cancers. During our studies into the causes of this variation, we observed a consistent increase in cell proliferation at low drug concentrations (
Resumo:
Little is known about the transdermal penetration of hydrocortisone in the horse and, although commercial formulations containing hydrocortisone are registered for topical use in the horse, there have been no studies investigating the movement of this glucocorticoid through different regions of equine skin. Skin was harvested from the thorax, groin and leg (dorsal metacarpal) regions of five Thoroughbred geldings and frozen (-20 degrees C) until required. Defrosted skin was placed in Franz-type diffusion cells and the amount of radiolabelled (H-3) hydrocortisone, in a saturated solution of unlabelled hydrocortisone in 50% ethanol (w/w), which penetrated through and remained within skin samples was measured over 24 h. Significantly higher (P < 0.001) maximum flux (J(max); mol/cm(2)/h) was measured when hydrocortisone was applied to skin from the leg, compared to thorax and groin, although significantly less hydrocortisone (P < 0.001) was retained within skin from the leg at 24 h. Topical application of hydrocortisone in a vehicle containing ethanol would penetrate faster through leg skin from the lower leg when compared with the thorax or groin, which depending on cutaneous blood flow, may result in higher systemic drug concentrations or greater efficiency in treating local inflamed tissue.
Resumo:
Aims To investigate the concentration-effect relationship and pharmacokinetics of leflunomide in patients with rheumatoid arthritis (RA). Methods Data were collected from 23 RA patients on leflunomide therapy (as sole disease modifying antirheumatic drug (DMARD)) for at least 3 months. Main measures were A77 1726 (active metabolite of leflunomide) plasma concentrations and disease activity measures including pain, duration/intensity of morning stiffness, and SF-36 survey. A population estimate was sought for apparent clearance (CL/F ) and volume of distribution was fixed (0.155 l kg(-1)). Factors screened for influence on CL/F were weight, age, gender and estimated creatinine clearance. Results Significantly higher A77 1726 concentrations were seen in patients with less swollen joints and with higher SF-36 mental summary scores than in those with measures indicating more active disease (P < 0.05); concentration-effect trends were seen with five other disease activity measures. Statistical analysis of all disease activity measures showed that mean A77 1726 concentrations in groups with greater control of disease activity were significantly higher than those in whom the measures indicated less desirable control (P < 0.05). There was large between subject variability in the dose-concentration relationship. A steady-state infusion model best described the pharmacokinetic data. Inclusion of age as a covariate decreased interindividual variability (P < 0.01), but this would not be clinically important in terms of dosage changes. Final parameter estimate (% CV interindividual variability) for CL/F was 0.0184 l h(-1) (50%) (95% CI 0.0146, 0.0222). Residual (unexplained) variability (% CV) was 8.5%. Conclusions This study of leflunomide in patients using the drug clinically indicated a concentration-effect relationship. From our data, a plasma A77 1726 concentration of 50 mg l(-1) is more likely to indicate someone with less active disease than is a concentration around 30 mg l(-1). The marked variability in pharmacokinetics suggests a place for individualized dosing of leflunomide in RA therapy.
Resumo:
We observed unexpected high plasma concentrations of tobrarriycin (48.5 and 28.1 mg/L) in fingerprick blood samples after the nebulization of tobramycin solution for inhalation (tobramycin 300 mg/5 mL, TOBI(R)) by 2 young children aged 3 years. To investigate whether dermal contamination could be the source of error, 3 adult volunteers were present during another nebulization by a third child (age 2 years). The volunteers had exposure to tobramycin by handling the nebulizer or the nebule and also by inhalation from holding the child and being in close proximity while TOBI(R) was being administered. Five blood samples by fingerprick and 2 by venipuncture were collected and assayed for tobramycin concentration. On each occasion the site was swabbed with alcohol wipes to mimic standard patient sampling methods. One site was resampled after cleaning of hands with 2% chlorhexidine gluconate and water. Tobramycin concentrations from venipuncture 1-2 hours after nebulization were all < 0.2 mg/L except for 1 result of 1.2 mg/L. The tobramycin concentrations from fingerpricks before hand washing varied between 6.8 and 172 mg/L, and after hand washing between 0.3 and 17.6 mg/L. Contamination of fingers with tobramycin is likely to have caused the error in the 2 initial cases and did cause misleadingly elevated levels in the adult volunteers. We caution that therapeutic drug monitoring of nebulized tobramycin should not be done by fingerprick sampling, and care should be taken to avoid contamination of the venipuncture site.
Resumo:
We studied an in vitro model of continuous venovenous haemofiltration to determine levofloxacin adsorption by polyacrylonitrile (PAN) filters. Four doses of levofloxacin (5, 25, 50 and 100 mg) were used, resulting in circulating concentrations of levofloxacin at 120 min of 3.56 +/- 0.14, 15.84 +/- 2.08, 31.42 +/- 1.95 and 58.23 +/- 1.10 mg/L, respectively. Adsorption at 2 h was 0.65 +/- 0.17, 5.99 +/- 2.49, 12.30 +/- 2.34 and 30.13 +/- 1.32 mg, respectively (P < 0.001). From 2 h to 4 h, increasing the blood pump rate and the ultrafiltration rate had no effect on adsorption. When the concentration was decreased from 3.55 +/- 0.13 mg/L at 4 h to 2.16 +/- 0.11 mg/L at 5 h by addition of lactated Ringer's solution, adsorption decreased from 0.67 +/- 0.16 mg to 0.21 +/- 0.25 mg (P < 0.05). These data show that adsorption of levofloxacin by PAN haemofilters is concentration dependent and reversible in vitro and suggest that adsorption by haemofilters is unlikely to affect levofloxacin pharmacokinetics significantly in vivo. (c) 2006 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.