85 resultados para SYNTHASE ACTIVATION
em University of Queensland eSpace - Australia
Resumo:
Muscle glycogen inharmoniously regulates glycogen synthase activity, glucose uptake, and proximal insulin signaling. Am J Physiol Endocrinol Metab 290: E154-E162, 2006. First published August 23, 2005; doi:10.1152/ajpendo. 00330.2005.-Insulin-stimulated glucose uptake and incorporation of glucose into skeletal muscle glycogen contribute to physiological regulation of blood glucose concentration. In the present study, glucose handling and insulin signaling in isolated rat muscles with low glycogen (LG, 24-h fasting) and high glycogen (HG, refed for 24 h) content were compared with muscles with normal glycogen (NG, rats kept on their normal diet). In LG, basal and insulin-stimulated glycogen synthesis and glycogen synthase activation were higher and glycogen synthase phosphorylation (Ser645, Ser649, Ser653, Ser657) lower than in NG. GLUT4 expression, insulin-stimulated glucose uptake, and PKB phosphorylation were higher in LG than in NG, whereas insulin receptor tyrosyl phosphorylation, insulin receptor substrate-1-associated phosphatidylinositol 3-kinase activity, and GSK-3 phosphorylation were unchanged. Muscles with HG showed lower insulin-stimulated glycogen synthesis and glycogen synthase activation than NG despite similar dephosphorylation. Insulin signaling, glucose uptake, and GLUT4 expression were similar in HG and NG. This discordant regulation of glucose uptake and glycogen synthesis in HG resulted in higher insulin-stimulated glucose 6-phosphate concentration, higher glycolytic flux, and intracellular accumulation of nonphosphorylated 2-deoxyglucose. In conclusion, elevated glycogen synthase activation, glucose uptake, and GLUT4 expression enhance glycogen resynthesis in muscles with low glycogen. High glycogen concentration per se does not impair proximal insulin signaling or glucose uptake. Insulin resistance is observed at the level of glycogen synthase, and the reduced glycogen synthesis leads to increased levels of glucose 6-phosphate, glycolytic flux, and accumulation of nonphosphorylated 2-deoxyglucose.
Resumo:
Isoleucine, leucine and valine are synthesized via a common pathway in which the first reaction is catalysed by AHAS (acetohydroxyacid synthase; EC 2.2.1.6). This heterotetrameric enzyme is composed of a larger subunit that contains the catalytic machinery and a smaller subunit that plays a regulatory role. The RSU (regulatory subunit) enhances the activity of the CSU (catalytic sub unit) and mediates end-product inhibition by one or more of the branched-chain amino acids, usually valine. Fungal AHAS differs front that in other organisms in that the inhibition by valine is reversed by MgATP. The fungal AHAS RSU also differs from that in other organisms in that it contains a sequence insert. We suggest that this insert may form the MgATP-binding site and we have tested this hypothesis by mutating ten highly conserved amino acid residues of the yeast AHAS RSU. The modified subunits were tested for their ability to activate the yeast AHAS CSU, to confer sensitivity to valine inhibition and to mediate reversal of the inhibition by MgATP. All but one of the mutations resulted in substantial changes in the properties of the RSU. Unexpectedly, four of them gave a protein that required mgATP in order for strong stimulation of the CSU and valine inhibition to be observed. A model to explain this result is proposed. Five of the mutations abolished MgATP activation and are suggested to constitute the binding site for this modulator.
Resumo:
We have previously shown that human leukaemia inhibitory factor (hLIF) inhibits perivascular cuff-induced neointimal formation in the rabbit carotid artery. Since nitric oxide (NO) is a known inhibitor of smooth muscle growth, NO synthase (NOS) activity in the presence of hLIF was examined in vivo and in vitro. In rabbit aortic smooth muscle cell (SMC) culture, significant NOS activity was observed at 50 pg/ml hLIF, with maximal activity at 5 ng/ml. In the presence of the NOS inhibitor L-NAME, hLIF-induced activation of NOS was greatly decreased, however it was still 63-fold higher than in control (p < 0.05). SMC-DNA synthesis was significantly reduced (-47%) following incubation with hLIF plus L-arginine, the substrate required for NO production (p < 0.05), with no effect observed in the absence of L-arginine. Silastic cuff placement over the right carotid artery of rabbits resulted in a neointima 19.3 +/- 5.4% of total wall cross-sectional area, which was increased in the presence of L-NAME (27.0 +/- 2.0%; p < 0.05) and reduced in the presence of L-arginine (11.3 +/- 2.0%; p < 0.05). The effect of L-arginine was ameliorated by co-administration of L-NAME (16.4 +/- 1.5%). However, administration of L-NAME with hLIF had no effect on the potent inhibition of neointimal formation by hLIF (3.2 +/- 2.5 vs. 2.1 +/- 5.4%, respectively). Similarly, with hLIF administration, NOS activity in the cuffed carotid increased to 269.0 +/- 14.0% of saline-treated controls and remained significantly higher with coadministration of L-NAME (188.5 +/- 14.7%). These results indicate that hLIF causes superinduction of NO by SMC, and that it is, either partially or wholly, through this mechanism that hLIF is a potent inhibitor of neointimal formation in vivo and of smooth muscle proliferation in vitro.
Resumo:
The first step in the common pathway for the biosynthesis of branched-chain amino acids is catalysed by acetohydroxyacid synthase (AHAS; EC 4.1.3.18). The enzyme is found in plants, fungi and bacteria, and is regulated by controls on transcription and translation, and by allosteric modulation of catalytic activity. It has long been known that the bacterial enzyme is composed of two types of subunit, and a similar arrangement has been found recently for the yeast and plant enzymes. One type of subunit contains the catalytic machinery, whereas the other has a regulatory function. Previously, we have shown [Pang and Duggleby (1999) Biochemistry 38, 5222-5231] that yeast AHAS can be reconstituted from its separately purified subunits. The, reconstituted enzyme is inhibited by valine, and ATP reverses this inhibition. In the present work, we further characterize the structure and the regulatory properties of reconstituted yeast AHAS. High phosphate concentrations are required for reconstitution and it is shown that these conditions are necessary for physical association between the catalytic and regulatory subunits. It is demonstrated by CD spectral changes that ATP binds to the regulatory subunit alone, most probably as MgATP. Neither valine nor MgATP causes dissociation of the regulatory subunit from the catalytic subunit. The specificity of valine inhibition and MgATP activation are examined and it is found that the only effective analogue of either regulator of those tested is the non-hydrolysable ATP mimic, adenosine 5 '-[beta,gamma -imido]triphosphate. The kinetics of regulation are studied in detail and it is shown that the activation by MgATP depends on the valine concentration in a complex manner that is consistent with a proposed quantitative model.
Resumo:
Peroxisome proliferator-activated receptor-alpha (PPAR alpha) is a member of the steroid hormone receptor superfamily. In rodents, PPAR alpha. alters genes involved in cell cycle regulation in hepatocytes. Some of these genes are implicated in neuronal cell death. Therefore, in this study, we examined the toxicological consequence of PPAR alpha activation in rat primary cultures of cerebellar granule neurons. Our studies demonstrated the presence of PPAR alpha mRNA in cultures by reverse transcriptase-polymerase chain reaction. After 10 days in vitro, cerebellar granule neuron cultures were incubated with the selective PPAR alpha activator 4-chloro-6-(2,3-xylidino)2-pyrimidinylthioacetic acid (Wy-14,643). The inherent toxicity of Wy-14,643 and the effect of PPAR alpha activation following toxic stimuli were assessed. In these studies, neurotoxicity was induced through reduction of extracellular [KCl] from 25 mM to 5.36 mM. We observed no inherent toxicity of Wy-1 4,643 (24 hr) in cultured cerebellar granule cells. However, after reduction of [KCl], cerebellar granule cell cultures incubated with Wy-14,643 showed significantly greater toxicity than controls. These results suggest a posssible role for PPAR(x in augmentation of cerebellar granule neuronal death after toxic stimuli. (C) 2001 Wiley-Liss, Inc.
Resumo:
Acetohydroxy acid synthases (AHAS) are thiamin diphosphate- (ThDP-) and FAD-dependent enzymes that catalyze the first common step of branched-chain amino acid biosynthesis in plants, bacteria, and fungi. Although the flavin cofactor is not chemically involved in the physiological reaction of AHAS, it has been shown to be essential for the structural integrity and activity of the enzyme. Here, we report that the enzyme-bound FAD in AHAS is reduced in the course of catalysis in a side reaction. The reduction of the enzyme-bound flavin during turnover of different substrates under aerobic and anaerobic conditions was characterized by stopped-flow kinetics using the intrinsic FAD absorbance. Reduction of enzyme-bound FAD proceeds with a net rate constant of k' = 0.2 s(-1) in the presence of oxygen and approximately 1 s(-1) under anaerobic conditions. No transient flavin radicals are detectable during the reduction process while time-resolved absorbance spectra are recorded. Reconstitution of the binary enzyme-FAD complex with the chemically synthesized intermediate 2-(hydroxyethyl)-ThDP also results in a reduction of the flavin. These data provide evidence for the first time that the key catalytic intermediate 2-(hydroxyethyl)ThDP in the carbanionic/enamine form is not only subject to covalent addition of 2-keto acids and an oxygenase side reaction but also transfers electrons to the adjacent FAD in an intramolecular redox reaction yielding 2-acetyl-ThDP and reduced FAD. The detection of the electron transfer supports the idea of a common ancestor of acetohydroxy acid synthase and pyruvate oxidase, a homologous ThDP- and FAD-dependent enzyme that, in contrast to AHASs, catalyzes a reaction that relies on intercofactor electron transfer.
Resumo:
Endochondral bone is formed during an avascular period in an environment of low oxygen. Under these conditions, pluripotential mesenchymal stromal cells preferentially differentiate into chondrocytes and form cartilage. In this study, we investigated the hypothesis that oxygen tension modulates bone mesenchymal cell fate by altering the expression of genes that function to promote chondrogenesis. Microarray of RNA samples from ST2 cells revealed significant changes in 728 array elements (P < 0.01) in response to hypoxia. Real-time PCR on these RNA samples, and separate samples from C3H10T1/2 cells, revealed hypoxia-induced changes in the expression of additional genes known to be expressed by chondrocytes including Sox9 and its downstream targets aggrecan and Col2a. These changes were accompanied by the accumulation of mucopolysacharide as detected by alcian blue staining. To investigate the mechanisms responsible for upregulation of Sox9 by hypoxia, we determined the effect of hypoxia on HIF-1 alpha levels and Sox9 promoter activity in ST2 cells. Hypoxia increased nuclear accumulation of HIF-1 alpha and activated the Sox9 promoter. The ability of hypoxia to transactivate the Sox9 promoter was virtually abolished by deletion of HIF-1 alpha consensus sites within the proximal promoter. These findings suggest that hypoxia promotes the differentiation of mesenchymal cells along a chondrocyte pathway in part by activating Sox-9 via a HIF-1 alpha-dependent mechanism. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Proliferation of activated hepatic stellate cells (HSC) is an important event in the development of hepatic fibrosis. Insulin-like growth factor-1 (IGF-1) has been shown to be mitogenic for HSC, but the intracellular signaling pathways involved have not been fully characterized. Thus, the aims of the current study were to examine the roles of the extracellular signal-regulated kinase (ERK), phosphatidylinositol 3-kinase (P13-K) and p70-S6 kinase (p70-S6-K) signaling pathways in IGF-1- and platelet-derived growth factor (PDGF)-induced mitogenic signaling of HSC and to examine the potential crosstalk between these pathways. Both IGF-1 and PDGF increased ERK, P13-K and p70-S6-K activity. When evaluating potential crosstalk between these signaling pathways, we observed that P13-K is required for p70-S6-K activation by IGF-1 and PDGF, and is partially responsible for PDGF-induced ERK activation. PDGF and IGF-1 also increased the levels of cyclin D1 and phospho-glycogen synthase kinase-30. Coordinate activation of ERK, P13-K and p70-S6-K is important for perpetuating the activated state of HSC during fibrogenesis.
Resumo:
Background In familial hyperaldosteronism type I (FH-I), glucocorticoid treatment suppresses adrenocorticotrophic hormone-regulated hybrid gene expression and corrects hyperaldosteronism. Objective To determine whether the wild-type aldosterone synthase genes, thereby released from chronic suppression, are capable of functioning normally. Methods We compared mid-morning levels of plasma potassium, plasma aldosterone, plasma renin activity (PRA) and aldosterone : PRA ratios, measured with patients in an upright position, and responsiveness of aldosterone levels to infusion of angiotensin II (AII), for 11 patients with FH-I before and during long-term (0.8-14.3 years) treatment with 0.25-0.75 mg/day dexamethasone or 2.5-10 mg/day prednisolone. Results During glucocorticoid treatment, hypertension was corrected in all. Potassium levels, which had been low (< 3.5 mmol/l) in two patients before treatment, were normal in all during treatment (mean 4.0 +/- 0.1 mmol/l, range 3.5-4.6). Aldosterone levels during treatment [13.2 +/- 2.1 ng/100 ml (mean +/- SEM)] were lower than those before treatment (20.1 +/- 2.5 ng/100 ml, P < 0.05). PRA levels, which had been suppressed before treatment (0.5 +/- 0.2 ng/ml per h), were unsuppressed during treatment (5.1 +/- 1.5 ng/ml per h, P < 0.01) and elevated (> 4 ng/ml per h) in six patients. Aldosterone : PRA ratios, which had been elevated (> 30) before treatment (101.1 +/- 25.9), were much lower during treatment (4.1 +/- 1.0, P < 0.005) and below normal (< 5) in eight patients. Surprisingly, aldosterone level, which had not been responsive (< 50% rise) to infusion of AII for all 11 patients before treatment, remained unresponsive for 10 during treatment. Conclusions Apparently regardless of duration of glucocorticoid treatment in FH-I, aldosterone level remains poorly responsive to AII, with a higher than normal PRA and a low aldosterone : PRA ratio. This is consistent with there being a persistent defect in functioning of wild-type aldosterone synthase gene. (C) Rapid Science Publishers ISSN 0263-6352.
Resumo:
We have screened the hydroxymethylbilane synthase cDNAs of 3 patients from 2 families suffering from acute intermittent porphyria (AIP) from Scotland and South Africa using heteroduplex and chemical cleavage of mismatch analyses, Direct sequencing was used to characterise the mutations, The two novel mutations identified were a missense mutation at nucleotide position 64 in exon 3 (R22C) and a single base-pair deletion in exon 15, These mutations are predicted to affect the normal function of the enzyme and, therefore, are expected to be the primary cause of disease in these patients.
Resumo:
RT-PCR and direct sequence analyses were used to define mutations in the cystathionine beta-synthase (CBS) gene in two unrelated male patients with vitamin B6 nonresponsive homocystinuria. Both patients were compound heterozygotes for CBS alleles containing point mutations. One patient had a maternally derived G-->A transition in the splice-donor site of intron 1, resulting in aberrant splicing of CBS mRNA. The other allele contained a missense mutation resulting in the previously reported E144K mutant CBS protein. The second patient had a maternally derived 4 bp insertion in exon 17, predicted to cause a CBS peptide of altered amino acid sequence. A 494G-->A transition was found in exon 4 of the other allele, predicting a C165Y substitution. Expression of recombinant CBS protein, containing the C165Y mutation, had no detectable catalytic activity. Each mutation was confirmed in genomic DNA. (C) 1998 Wiley-Liss, Inc.
Resumo:
The hydroxymethylbilane synthase (HMBS) mRNAs from 44 control individuals and 30 patients suffering from acute intermittent porphyria (AIP), were screened for length differences by reverse transcriptase polymerase chain reaction (RT-PCR) and any abnormalities were characterized by direct sequencing. Examination of the mRNAs extracted from the peripheral blood lymphocytes of the samples revealed varying degrees of alternative splicing, involving the removal of exons 3 and 12. Approximately 10-50% of the mRNA molecules were affected, despite the absence of genomic splice site mutations or any major deviance from consensus splice sequence values. The preliminary data obtained from this study suggest that this event is a normal occurrence in peripheral blood lymphocytes, and may not be associated with the molecular pathology responsible for AIP. (C) 1998 Academic Press Limited.
Resumo:
The high-affinity receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin-1 (IL-3), and IL-5 are heterodimeric complexes consisting of cytokine-specific alpha subunits and a common signal-transducing beta subunit (h beta c). We have previously demonstrated the oncogenic potential of this group of receptors by identifying constitutively activating point mutations in the extracellular and transmembrane domains of h beta c. We report here a comprehensive screen of the entire h beta c molecule that has led to the identification of additional constitutive point mutations by virtue of their ability to confer factor independence on murine FDC-P1 cells. These mutations were clustered exclusively in a central region of h beta c that encompasses the extracellular membrane-proximal domain, transmembrane domain, and membrane-proximal region of the cytoplasmic domain. Interestingly, most h beta c mutants exhibited cell type-specific constitutive activity, with only two transmembrane domain mutants able to confer factor independence on both murine FDC-P1 and BAF-B03 cells. Examination of the biochemical properties of these mutants in FDC-P1 cells indicated that MAP kinase (ERK1/2), STAT, and JAK2 signaling molecules were constitutively activated. In contrast, only some of the mutant beta subunits were constitutively tyrosine phosphorylated. Taken together; these results highlight key regions involved in h beta c activation, dissociate h beta c tyrosine phosphorylation from MAP kinase and STAT activation, and suggest the involvement of distinct mechanisms by which proliferative signals can be generated by h beta c. (C) 1998 by The American Society of Hematology.
Resumo:
Familial hyperaldosteronism type II (FH-II) is characterized by autosomal dominant inheritance and hypersecretion of aldosterone due to adrenocortical hyperplasia or an aldosterone-producing adenoma; unlike FH type I (FH-I), hyperaldosteronism in FH-II is not suppressible by dexamethasone. Of a total of 17 FH-II families with 44 affected members, we studied a large kindred with 7 affected members that was informative for linkage analysis. Family members were screened with the aldosterone/PRA ratio test; patients with aldosterone/PRA ratio greater than 25 underwent fludrocortisone/salt suppression testing for confirmation of autonomous aldosterone secretion. Postural testing, adrenal gland imaging, and adrenal venous sampling were also performed. Individuals affected by FH-II demonstrated lack of suppression of plasma A levels after 4 days of dexamethasone treatment (0.5 mg every 6 h). All patients had neg ative genetic testing for the defect associated with FH-I, the CYP11B1/CYP11B2 hybrid gene. Genetic linkage was then examined between FH-II and aldosterone synthase (the CYP11B2 gene) on chromosome 8q. A polyadenylase repeat within the 5'-region of the CYP11B2 gene and 9 other markers covering an approximately 80-centimorgan area on chromosome 8q21-8qtel were genotyped and analyzed for linkage. Two-point logarithm of odds scores were negative and ranged from -12.6 for the CYP11B2 polymorphic marker to -0.98 for the D8S527 marker at a recombination distance (theta) of 0. Multipoint logarithm of odds score analysis confirmed the exclusion of the chromosome 8q21-8qtel area as a region harboring the candidate gene for FH-II in this family. We conclude that FH-II shares autosomal dominant inheritance and hyperaldosteronism with FH-I, but, as demonstrated by the large kindred investigated in this report, it is clinically and genetically distinct. Linkage analysis demonstrated that the CYP11B2 gene is not responsible for FH-II in this family; furthermore, chromosome 8q21-8qtel most likely does not harbor the genetic defect in this kindred.