10 resultados para SVM

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In deregulated electricity market, modeling and forecasting the spot price present a number of challenges. By applying wavelet and support vector machine techniques, a new time series model for short term electricity price forecasting has been developed in this paper. The model employs both historical price and other important information, such as load capacity and weather (temperature), to forecast the price of one or more time steps ahead. The developed model has been evaluated with the actual data from Australian National Electricity Market. The simulation results demonstrated that the forecast model is capable of forecasting the electricity price with a reasonable forecasting accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We are developing a telemedicine application which offers automated diagnosis of facial (Bell's) palsy through a Web service. We used a test data set of 43 images of facial palsy patients and 44 normal people to develop the automatic recognition algorithm. Three different image pre-processing methods were used. Machine learning techniques (support vector machine, SVM) were used to examine the difference between the two halves of the face. If there was a sufficient difference, then the SVM recognized facial palsy. Otherwise, if the halves were roughly symmetrical, the SVM classified the image as normal. It was found that the facial palsy images had a greater Hamming Distance than the normal images, indicating greater asymmetry. The median distance in the normal group was 331 (interquartile range 277-435) and the median distance in the facial palsy group was 509 (interquartile range 334-703). This difference was significant (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we explore the use of text-mining methods for the identification of the author of a text. We apply the support vector machine (SVM) to this problem, as it is able to cope with half a million of inputs it requires no feature selection and can process the frequency vector of all words of a text. We performed a number of experiments with texts from a German newspaper. With nearly perfect reliability the SVM was able to reject other authors and detected the target author in 60–80% of the cases. In a second experiment, we ignored nouns, verbs and adjectives and replaced them by grammatical tags and bigrams. This resulted in slightly reduced performance. Author detection with SVMs on full word forms was remarkably robust even if the author wrote about different topics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Learning from mistakes has proven to be an effective way of learning in the interactive document classifications. In this paper we propose an approach to effectively learning from mistakes in the email filtering process. Our system has employed both SVM and Winnow machine learning algorithms to learn from misclassified email documents and refine the email filtering process accordingly. Our experiments have shown that the training of an email filter becomes much effective and faster

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we demonstrate that it is possible to gradually improve the performance of support vector machine (SVM) classifiers by using a genetic algorithm to select a sequence of training subsets from the available data. Performance improvement is possible because the SVM solution generally lies some distance away from the Bayes optimal in the space of learning parameters. We illustrate performance improvements on a number of benchmark data sets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fast Classification (FC) networks were inspired by a biologically plausible mechanism for short term memory where learning occurs instantaneously. Both weights and the topology for an FC network are mapped directly from the training samples by using a prescriptive training scheme. Only two presentations of the training data are required to train an FC network. Compared with iterative learning algorithms such as Back-propagation (which may require many hundreds of presentations of the training data), the training of FC networks is extremely fast and learning convergence is always guaranteed. Thus FC networks may be suitable for applications where real-time classification is needed. In this paper, the FC networks are applied for the real-time extraction of gene expressions for Chlamydia microarray data. Both the classification performance and learning time of the FC networks are compared with the Multi-Layer Proceptron (MLP) networks and support-vector-machines (SVM) in the same classification task. The FC networks are shown to have extremely fast learning time and comparable classification accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PTS1 proteins are peroxisomal matrix proteins that have a well conserved targeting motif at the C-terminal end. However, this motif is present in many non peroxisomal proteins as well, thus predicting peroxisomal proteins involves differentiating fake PTS1 signals from actual ones. In this paper we report on the development of an SVM classifier with a separately trained logistic output function. The model uses an input window containing 12 consecutive residues at the C-terminus and the amino acid composition of the full sequence. The final model gives a Matthews Correlation Coefficient of 0.77, representing an increase of 54% compared with the well-known PeroxiP predictor. We test the model by applying it to several proteomes of eukaryotes for which there is no evidence of a peroxisome, producing a false positive rate of 0.088%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Support vector machines (SVMs) have recently emerged as a powerful technique for solving problems in pattern classification and regression. Best performance is obtained from the SVM its parameters have their values optimally set. In practice, good parameter settings are usually obtained by a lengthy process of trial and error. This paper describes the use of genetic algorithm to evolve these parameter settings for an application in mobile robotics.