2 resultados para SURGES

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: Although manufacturers of bicycle power monitoring devices SRM and Power Tap (PT) claim accuracy to within 2.5%, there are limited scientific data available in support. The purpose of this investigation was to assess the accuracy of SRM and PT under different conditions. Methods: First, 19 SRM were calibrated, raced for 11 months, and retested using a dynamic CALRIG (50-1000 W at 100 rpm). Second, using the same procedure, five PT were repeat tested on alternate days. Third, the most accurate SRM and PT were tested for the influence of cadence (60, 80, 100, 120 rpm), temperature (8 and 21degreesC) and time (1 h at similar to300 W) on accuracy. Finally, the same SRM and PT were downloaded and compared after random cadence and gear surges using the CALRIG and on a training ride. Results: The mean error scores for SRM and PT factory calibration over a range of 50-1000 W were 2.3 +/- 4.9% and -2.5 +/- 0.5%, respectively. A second set of trials provided stable results for 15 calibrated SRM after 11 months (-0.8 +/- 1.7%), and follow-up testing of all PT units confirmed these findings (-2.7 +/- 0.1%). Accuracy for SRM and PT was not largely influenced by time and cadence; however. power output readings were noticeably influenced by temperature (5.2% for SRM and 8.4% for PT). During field trials, SRM average and max power were 4.8% and 7.3% lower, respectively, compared with PT. Conclusions: When operated according to manufacturers instructions, both SRM and PT offer the coach, athlete, and sport scientist the ability to accurately monitor power output in the lab and the field. Calibration procedures matching performance tests (duration, power, cadence, and temperature) are, however, advised as the error associated with each unit may vary.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The feasibility of using photosynthetic sulfide-oxidizing bacteria to remove sulfide from wastewater in circumstances where axenic cultures are unrealistic has been completely reconsidered on the basis of known ecophysiological data, and the principles of photobioreactor and chemical reactor engineering. This has given rise to the development of two similar treatment concepts relying on biofilms dominated by green sulfur bacteria (GSB) that develop on the exterior of transparent surfaces suspended in the wastewater. The GSB are sustained and selected for by radiant energy in the band 720 - 780 nm, supplied from within the transparent surface. A model of one of these concepts was constructed and with it the reactor concept was proven. The dependence of sulfide-removal rate on bulk sulfide concentration has been ascertained. The maximum net areal sulfide removal rate was 2.23 g m(-2) day(-1) at a bulk sulfide concentration of 16.5 mg L-1 and an incident irradiance of 1.51 W m(-2). The system has a demonstrated capacity to mitigate surges in sulfide load, and appears to use much less radiant power than comparable systems. The efficacy with which this energy was used for sulfide removal was 1.47 g day(-1) W-1. The biofilm was dominated by GSB, and evidence gathered indicated that other types of phototrophs were not present. (C) 2004 Wiley Periodicals, Inc.