17 resultados para SURFACE MODIFICATION
em University of Queensland eSpace - Australia
Resumo:
Stem cells, either from embryonic or adult sources, have demonstrated the potential to differentiate into a wide range of tissues depending on culture conditions. This makes them prime candidates for use in tissue engineering applications. Current technology allows us to process biocompatible and biodegradable polymers into three-dimensional (3D) configurations, either as solid porous scaffolds or hydrogels, with controlled macro and/or micro spatial geometry and surface chemistry. Such control provides us with the ability to present highly controlled microenvironments to a chosen cell type. However, the precise microenvironments required for optimal expansion and/or differentiation of stem cells are only now being elucidated, and hence the controlled use of stem cells in tissue engineering remains a very young field. We present here a brief review of the current literature detailing interactions between stem cells and 3D scaffolds of varying morphology and chemical properties, concluding with remaining challenges for those interested in tissue engineering using tailored scaffolds and stem cells.
Resumo:
The bioactivity of three methacryloyloxyethyl phosphate (MOEP) grafted expanded polytetrafluoroethylene (ePTFE) membranes with varying surface coverage as well as unmodified ePTFE was investigated through a series of in vitro tests: calcium phosphate (CaP) growth in simulated body fluid (SBF), serum protein adsorption, and a morphology and attachment study of human osteoblast-like SaOS-2 cells. The graft copolymers were prepared by means of gamma irradiation induced grafting and displayed various surface morphologies and wettabilities depending on the grafting conditions used. Unmodified ePTFE did not induce nucleation of Cal? minerals, whereas all the grafted membranes revealed the growth of Cal? minerals after 7 days immersion in SBF. The sample with lowest surface grafting yield (24% coverage), a smooth graft morphology and relatively high hydrophobicity (theta(adv) = 120 degrees, theta(rec) = 80 degrees) showed carbonated hydroxyapatite growth covering the surface. On the other hand, the samples with high surface grafting yield (76% and 100%), a globular graft morphology and hydrophilic surfaces (theta(adv) = 60 degrees and 80 degrees, theta(rec) = 25 degrees and 15 degrees, respectively) exhibited irregular growth of non-apatitic Cap minerals. Irreversibly adsorbed protein measured after a 1 h immersion in serum solution was quantified by the amount of nitrogen on the surface using XPS, as well as by weight increase. All grafted membranes adsorbed 3-6 times more protein than the unmodified membrane. The sample with the highest surface coverage adsorbed the most protein. Osteoblast-like SaOS-2 cells cultured for 3 h revealed significantly higher levels of cell attachment on all grafted membranes compared to unmodified ePTFE. Although the morphology of the cells was heterogeneous, in general, the higher grafted surfaces showed a much better cell morphology than both the low surface-grafted and the control unmodified sample. The suite of in vitro tests confirms that a judicious choice of grafted monomer such as the phosphate-containing methacrylate monomer (MOEP) significantly improves the bioactivity of ePTFE in vitro. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials.
Resumo:
A method has been developed to produce thick (> 400 mu m) AlN surface layers oil aluminium plates at 540 degrees C, under nitrogen at atmospheric pressure. A critical element of the process is the use of Mg powder placed in close proximity to the Al plate surface. The Mg reduces/disrupts the natural, protective oxide film on the Al surface. The nitride layers form through two distinct modes, one growing outward from the Al plate surface and the other growing into the Al. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Setf-supported asymmetric hollow-fiber membranes of mixed oxygen-ionic and electronic conducting perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) were prepared by a combined phase-inversion and sintering technique. The starting inorganic powder was synthesized by combined EDTA-citrate complexing process followed by thermal treatment at 600 degrees C. The powder was dispersed in a polymer solution and then extruded into hollow-fiber precursors through a spinneret. ne fiber precursors were sintered at elevated temperatures to form gastight membranes, which were characterized by SEM and gas permeation tests. Performance of the hollow fibers in air separation was both experimentally and theoretically studied at various conditions. The results reveal that the oxygen permeation process was controlled by the slow oxygen surface exchange kinetics under the investigated conditions. The porous inner surface of the prepared perovskite hollow-fiber membranes considerably favored the oxygen permeation. The maximum oxygen flux measured was 0.031 mol-m(-2).s(-1) at 950 degrees C with the sweep gas flow rate of 0.522 mol(.)m(-2).s(-1). To improve the oxygen flux of BSCF perovskite membranes, future work should be focused on surface modification rather than reduction of the membrane thickness. (c) 2006 American Institute of Chemical Engineers.
Resumo:
Although poly(alpha-hydroxy esters), especially the PLGA family of lactic acid/glycolic acid copolymers, have many properties which make them promising materials for tissue engineering, the inherent chemistry of surfaces made from these particular polymers is problematic. In vivo, they promote a strong foreign-body response as a result of nonspecific adsorption and denaturation of serum proteins, which generally results in the formation of a nonfunctional fibrous capsule. Surface modification post-production of the scaffolds is an often-utilized approach to solving this problem, conceptually allowing the formation of a scaffold with mechanical properties defined by the bulk material and molecular-level interactions defined by the modified surface properties. A promising concept is the so-called blank slate: essentially a surface that is rendered resistant to nonspecific protein adsorption but can be readily activated to covalently bind bio-functional molecules such as extracellular matrix proteins, growth factors or polysaccharides. This study focuses on the use of the quartz crystal microbalance (QCM) to follow the layer-by-layer (LbL) electrostatic deposition of high molecular weight hyaluronic acid and chitosan onto PLGA surfaces rendered positively charged by aminolysis, to form a robust, protein-resistant coating. We further show that this surface may be further functionalized via the covalent attachment of collagen IV, which may then be used as a template for the self-assembly of basement membrane components from dilute Matrigel. The response of NIH-3T3 fibroblasts to these surfaces was also followed and shown to closely parallel the results observed in the QCM.
Resumo:
In this paper, we investigate the effect of the solid surface on the fluid-fluid intermolecular potential energy. This modified fluid-fluid interaction energy due to the inducement of a solid surface is used in the grand canonical Monte Carlo (GCMC) simulation of various noble gases, nitrogen, and methane on graphitized thermal carbon black. This effect is such that the effective interaction potential energy between two particles close to surface is less than the potential energy if the solid substrate is not present. With this modification the GCMC simulation results agree extremely well with the experimental data over a wide range of pressures while the simulation results with the unmodified potential energy give rise to a shoulder near the neighborhood of monolayer coverage and the significant overprediction of the second and higher layer coverages. In particular the unmodified GCMC results exhibit very sharp change in those higher layers while the experimental data have a much gradual change in the uptake. We will illustrate this theory with adsorption data of argon, xenon, neon, nitrogen, and methane on graphitized thermal carbon black.
Resumo:
In this paper, we study the effect of solid surface mediation on the intermolecular potential energy of nitrogen, and its impact on the adsorption of nitrogen on a graphitized carbon black surface and in carbon slit-shaped pores. This effect arises from the lower effective interaction potential energy between two particles close to the surface compared to the potential energy of the same two particles when they are far away from the surface. A simple equation is proposed to calculate the reduction factor and this is used in the Grand Canonical Monte Carlo (GCMC) simulation of nitrogen adsorption on graphitized thermal carbon black. With this modification, the GCMC simulation results agree extremely well with the experimental data over a wide range of pressure; the simulation results with the original potential energy (i.e. no surface mediation) give rise to a shoulder in the neighbourhood of monolayer coverage and a significant over-prediction of the second and higher layer coverages. The influence of this surface mediation on the dependence of the pore-filling pressure on the pore width is also studied. It is shown that such surface mediation has a significant effect on the pore-filling pressure. This implies that the use of the local isotherms obtained from the potential model without surface mediation could give rise to a serious error in the determination of the pore-size distribution.
Resumo:
Monodisperse 1-2 nm silicon nanocrystals are synthesized in reverse micelles and have their surfaces capped with either allylamine or 1-heptene to produce either hydrophilic or hydrophobic silicon nanocrystals. Optical characterization (absorption, PL, and time-resolved PL) is performed on colloidal solutions with the two types of surface-capped silicon nanocrystals with identical size distributions. Direct evidence is obtained for the modification of the optical properties of silicon nanocrystals by the surface-capping molecule. The two different surface-capped silicon nanocrystals show remarkably different optical properties.