5 resultados para SUPERSONIC ISOTHERMAL TURBULENCE
em University of Queensland eSpace - Australia
Resumo:
Attention is drawn to the feasibility of using isothermal calorimetry for the characterization of enzyme reactions under conditions bearing greater relevance to the crowded biological environment, where kinetic parameters are likely to differ significantly from those obtained by classical enzyme kinetic studies in dilute solution. An outline of the application of isothermal calorimetry to the determination of enzyme kinetic parameters is followed by considerations of the nature and consequences of crowding effects in enzyme catalysis. Some of those effects of thermodynamic non-ideality are then illustrated by means of experimental results from calorimetric studies of the effect of molecular crowding on the kinetics of catalysis by rabbit muscle pyruvate kinase. This review concludes with a discussion of the potential of isothermal calorimetry for the experimental determination of kinetic parameters for enzymes either in biological environments or at least in media that should provide reasonable approximations of the crowded conditions encountered in vivo. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
The mechanism of bainite growth has been investigated using in situ transmission electron microscopy observations. It was found that, in a number of alloys studied, a bainitic embryo is made of basic transformation units. These units are either a group of stacking faults or, in two dimensions, a series of parallelograms of different sizes. Thickening/widening of the bainite embryo takes place through shear along the stacking fault planes or twining planes. The bainite embryo is elongated by the formation of new transformation units at both tips of the bainite plate. The three-dimensional morphology of bainite is a convex tens-like lath. It is believed that the bainite embryo grows by shearing, which is controlled by the diffusion of solute atoms during the transformation. As the growth rate is much lower than that of martensite, it is therefore detectable. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Solutions of fructose, maltodextrin (DE 5), and their mixtures at the ratios of 20:80, 40:60, 50:50, 60:40, and 80:20 were gelled with 1% agar-agar and dried under convective-conductive drying conditions. The thin slabs were maintained at isothermal drying condition of 30 and 50 degrees C. Yamamoto's simplified method based on regular regime approach was used to calculate the (effective) moisture diffusivity. Both the drying rates and the moisture diffusivity exhibited strong concentration dependence. The concentration dependence was stronger in the case of fructose and fructose rich solutions. Both the moisture diffusivity and drying rates of the mixture solutions were enhanced due to plasticization of fructose on maltodextrin, which is explained through free volume theory.