3 resultados para SUBGRAPHS
em University of Queensland eSpace - Australia
Resumo:
A K-t,K-t-design of order n is an edge-disjoint decomposition of K-n into copies of K-t,K-t. When t is odd, an extended metamorphosis of a K-t,K-t-design of order n into a 2t-cycle system of order n is obtained by taking (t - 1)/2 edge-disjoint cycles of length 2t from each K-t,K-t block, and rearranging all the remaining 1-factors in each K-t,K-t block into further 2t-cycles. The 'extended' refers to the fact that as many subgraphs isomorphic to a 2t-cycle as possible are removed from each K-t,K-t block, rather than merely one subgraph. In this paper an extended metamorphosis of a K-t,K-t-design of order congruent to 1 (mod 4t(2)) into a 2t-cycle system of the same order is given for all odd t > 3. A metamorphosis of a 2-fold K-t,K-t-design of any order congruent to 1 (mod 4t(2)) into a 2t-cycle system of the same order is also given, for all odd t > 3. (The case t = 3 appeared in Ars Combin. 64 (2002) 65-80.) When t is even, the graph K-t,K-t is easily seen to contain t/2 edge-disjoint cycles of length 2t, and so the metamorphosis in that case is straightforward. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
It is shown that there exists a triangle decomposition of the graph obtained from the complete graph of order v by removing the edges of two vertex disjoint complete subgraphs of orders u and w if and only if u, w, and v are odd, ((v)(2)) - ((u)(2)) - ((w)(2)) equivalent to 0 (mod 3), and v >= w + u + max {u, w}. Such decompositions are equivalent to group divisible designs with block size 3, one group of size u, one group of size w, and v - u - w groups of size 1. This result settles the existence problem for Steiner triple systems having two disjoint specified subsystems, thereby generalizing the well-known theorem of Doyen and Wilson on the existence of Steiner triple systems with a single specified subsystem. (c) 2005 Wiley Periodicals, Inc.