14 resultados para SUBGENUS SCHIZOTRYPANUM
em University of Queensland eSpace - Australia
Resumo:
Apiomorpha Rubsaamen (Hemiptera: Coccoidea: Eriococcidae) is one of the most chromosomally diverse of all animal genera. There is extensive karyotypic variation within many of the morphologically defined species, including A. munita (Schrader) which is here reported to have diploid chromosome counts ranging from 6 to more than 100. Each of the three morphologically defined subspecies of A. munita also displays considerable chromosomal variation: A. m. tereticornuta Gullan (2n =6, 8, 20, 22 or 24), A. m. malleensis Gullan (2n =6, 20, 22, 24 or 26), and A. m. munita (Schrader) (2n=54 or >100). Apiomorpha munita appears to occur only on eucalypts of the informal subgenus Symphyomyrtus, with each of the subspecies of A. munita restricted to discrete symphyomyrt sections. Several different karyotypic forms within each subspecies of A. munita appear to be restricted to only one or a few eucalypt species or series. The association between apparent host specificity and chromosomal rearrangements in A. munita suggests that both may be playing an active role in taxon divergence in Apiomorpha. (C) 2001 The Linnean Society of London.
Resumo:
There has been much progress in our understanding of the phylogeny and evolution of ticks, particularly hard ticks, in the past 5 years. Indeed, a consensus about the phylogeny of the hard ticks has emerged. Our current working hypothesis for the phylogeny of ticks is quite different to the working hypothesis of 5 years ago. So that the classification reflects our knowledge of ticks, several changes to the nomenclature of ticks are imminent. One subfamily, the Hyalomminae, will probably be sunk, yet another, the Bothriocrotoninae n. subfamily, will be created. Bothriocrotoninae n. subfamily, and Bothriocroton n. genus, are being created to house an early-diverging ('basal') lineage of endemic Australian ticks that used to be in the genus Aponomma (ticks of reptiles). There has been progress in our understanding of the subfamily Rhipicephalinae. The genus Rhipicephalus is almost certainly paraphyletic with respect to the genus Boophilus. Thus, the genus Boophilus will probably become a subgenus of Rhipicephalus. This change to the nomenclature, unlike other options, will keep the name Boophilus in common usage. Rhipicephalus (Boophilus) microplus may still called B. microplus, and Rhipicephalus (Boophilus) annulatus may still be called B. annulatus, but the nomenclature will have been changed to reflect our knowledge of the phylogeny and evolution of these ticks. New insights into the historical zoogeography of ticks will also be presented.
Resumo:
The specific identity of endosymbiotic dinoflagellates (Symbiodinium spp.) from most zooxanthellate corals is unknown. In a survey of symbiotic cnidarians from the southern Great Barrier Reef (GBR), 23 symbiont types were identified from 86 host species representing 40 genera. A majority (>85%) of these symbionts belong to a single phylogenetic clade or subgenus (C) composed of closely related (as assessed by sequence data from the internal transcribed spacer region and the ribosomal large subunit gene), yet ecologically and physiologically distinct, types. A few prevalent symbiont types, or generalists, dominate the coral community of the southern GBR, whereas many rare and/or specific symbionts, or specialists, are found uniquely within certain host taxa. The comparison of symbiont diversity between southern GBR and Caribbean reefs shows an inverse relationship between coral diversity and symbiont diversity, perhaps as a consequence of more-rapid diversification of Caribbean symbionts. Among clade C types, generalists C1 and C3 are common to both Caribbean and southern GBR symbiont assemblages, whereas the rest are regionally endemic. Possibly because of environmental changes in the Caribbean after geographic isolation through the Quaternary period, a high proportion of Caribbean fauna associate with symbiont taxa from two other distantly related Symbiodinium clades (A and B) that rarely occur in Pacific hosts. The resilience of Porites spp. and the resistance of Montipora digitata to thermal stress and bleaching are partially explained by their association with a thermally tolerant symbiont type, whereas the indiscriminant widespread bleaching and death among certain Pacific corals, during El Nino Southern Oscillation events, are influenced by associations with symbionts possessing higher sensitivity to thermal stress.
Resumo:
An unusual new species of the gall-inducing scale insect genus Apiomorpha Rubsaamen is described from Queensland. The adult female, its gall, and the first-instar nymph (crawler) are illustrated, and relationships of the new species are estimated using mitochondrial COII data. Adult females induce cigar-shaped galls on leaves of several eucalypts in section Adnataria of subgenus Symphyomyrtus. The bilobed anal lobes of the adult female differ from those of all other Apiomorpha species (single lobe) and the first-instar nymph possesses features, such as broad frontal tubercles and dorsal stripes, that are not present in crawlers of other Apiomorpha species. However, DNA sequence data confirm that the new species falls within Apiomorpha, rather than representing a sister group, and indicate that the new species is not closely related to the A. pharetrata (Schrader) species-group, the only other group within Apiomorpha that induces cigar-shaped galls on leaves. The systematic affiliations of A. gullanae sp. n. are currently not known. Females only are known and there is some indication that reproduction in the new taxon is parthenogenetic. This represents the first putative case of parthenogenesis in Apiomorpha.
Resumo:
Little is known about the responses of Australian plants to excess metal, including Mn. It is important to remedy this lack of information so that knowledgeable decisions can be made about managing Mn contaminated sites where inhabited by Australian vegetation. Acacia holosericea, Melaleuca leucadendra, Eucalyptus crebra and Eucalyptus camaldulensis were grown in dilute solution culture for 10 weeks. The seedlings ( 42 days old) were exposed to six Mn treatments viz., 1, 8, 32, 128, 512 and 2048 muM. The order of tolerance to toxic concentrations of Mn was A. holosericea congruent to = E. crebra < M. leucadendra < E. camaldulensis, the critical external concentrations being approximately 5.1, 5.0, 21 and 330 muM, respectively. The critical tissue Mn concentrations for the youngest fully expanded leaf and total shoots were, respectively, 265 and 215 mug g(-1) DM for A. holosericea, 445 and 495 mug g(-1) DM for M. leucadendra, 495 and 710 mug g(-1) DM for E. crebra and 7230 and 6510 mug g(-1) DM for E. camaldulensis. The high tolerance of E. camaldulensis ( as opposed to the sensitivity of E. crebra) to excess Mn raises concern about fauna feeding on the plant and is consistent with hypotheses suggesting the Eucalyptus subgenus Symphomyrtus is particularly tolerant of stress, including excess Mn. The results from this paper provide the first comprehensive combination of growth responses, critical external concentrations, critical tissue concentrations and plant toxicity symptoms for three important Australian genera, viz., Eucalyptus, Acacia and Melaleuca, for use in the management of Mn toxic sites.
Resumo:
Butterflyfish are colourful, pan-tropical coastal fish that are important and distinctive members of coral reef communities. A successful systematic scheme and a robust phylogeny is considered essential in understanding further their biogeography and ecology, although recent cladistic treatments of butterflyfish phylogeny, based on soft tissue and bone morphology and coded at the generic and subgeneric levels, differ in character coding and subsequently tree topology. This study provides an independent test of the morphologically based hypotheses, using molecular systematic data from two partial mitochondrial gene fragments, cytochrome b (cytb) and small subunit rRNA (rrnS), for 52 ingroup chaetodontids and seven pomacanthids used to root the molecular trees. Individual gene trees were largely compatible and a combined molecular phylogeny, inferred from Bayesian analysis, was used to test alternative hypotheses suggested by morphological analyses. The tree was also used to map the latest morphological matrix in order to evaluate potential synapomorphies for various nodes defining butterflyfish interrelationships. A clade comprised of Chelmon and Coradion was sister group to other chaetodontids. Heniochus and Hemitaurichthys were each resolved as monophyletic groups, and as sister taxa Of the taxa sampled, Prognothodes was resolved as the sister genus to Chaeotodon. Of the ten Chaetodon subgenera sampled, all were monophyletic but their interrelationships differed significantly from that inferred from morphological characters. Lepidochaetodon was the most basal subgenus followed by Exornator and the remaining subgenera. Molecular data support the sister group relationship between Corallochaetodon and Citharoedus suggested by morphology, but major differences occur among the remaining more derived taxa. Chaetodon trifascialis and C. oligacanthus were resolved as sister taxa adding weight to the inclusion of the latter in C. Megaprotodon. Of those pairs of taxa known to hybridize and sampled with molecular data, all were closely related phylogenetically, except those hybrids known to occur in the Rabdophorus subgenus. Two base changes separated C. pelewensis from C. paucifasciatus which have been regarded previously as a single species. Cytb provided greater resolution than rrnS and will likely provide additional resolution with greater taxon sampling.
Resumo:
This study uses a molecular-dating approach to test hypotheses about the biogeography of Nothofagus. The molecular modelling suggests that the present-day subgenera and species date from a radiation that most likely commenced between 55 and 40 Myr ago. This rules out the possibility of a reconciled all-vicariance hypothesis for the biogeography of extant Nothofagus. However, the molecular dates for divergences between Australasian and South American taxa are consistent with the rifting of Australia and South America from Antarctica. The molecular dates further suggest a dispersal of subgenera Lophozonia and Fuscospora between Australia and New Zealand after the onset of the Antarctic Circumpolar Current and west wind drift. It appears likely that the New Caledonian lineage of subgenus Brassospora diverged from the New Guinean lineage elsewhere, prior to colonizing New Caledonia. The molecular approach strongly supports fossil-based estimates that Nothofagus diverged from the rest of Fagales more than 84 Myr ago. However, the mid-Cenozoic estimate for the diversification of the four extant subgenera conflicts with the palynological interpretation because pollen fossils, attributed to all four extant subgenera, were widespread across the Weddellian province of Gondwana about 71 Myr ago. The discrepancy between the pollen and molecular dates exists even when confidence intervals from several sources of error are taken into account. In contrast, the molecular age estimates are consistent with macrofossil dates. The incongruence between pollen fossils and molecular dates could be resolved if the early pollen types represent extinct lineages, with similar types later evolving independently in the extant lineages.
Resumo:
Microsatellites are difficult to recover from large plant genomes so cross-specific utilisation is an important source of markers. Fifty micro satellites were tested for cross-specific amplification and polymorphism to two New World hard pine species, slash pine (Pinus elliottii var. elliottii) and Caribbean pine (R caribaea var. hondurensis). Twenty-nine (58%) markers amplified in both hard pine species, and 23 of these 29 were polymorphic. Soft pine (subgenus Strobus) microsatellite markers did amplify, but none were polymorphic. Pinus elliottii var. elliottii and R caribaea var. hondurensis showed mutational changes in the flanking regions and the repeat motif that were informative for Pinus spp. phylogenetic relationships. Most allele length variation could be attributed to variability in repeat unit number. There was no evidence for ascertainment bias.
Resumo:
New Zealand has a good Neogene plant fossil record. During the Miocene it was without high topography and it was highly maritime, meaning that its climate, and the resulting vegetation, would be controlled dominantly by zonal climate conditions. Its vegetation record during this time suggests the climate passed from an ever-wet and cool but frostless phase in the Early Miocene in which Nothofagus subgenus Brassospora was prominent. Then it became seasonally dry, with vegetation in which palms and Eucalyptus were prominent and fires were frequent, and in the mid-Miocene, it developed a dry-climate vegetation dominated by Casuarinaceae. These changes are reflected in a sedimentological change from acidic to alkaline chemistry and the appearance of regular charcoal in the record. The vegetation then changed again to include a prominent herb component including Chenopodiaceae and Asteraceae. Sphagnum became prominent, and Nothofagus returned, but mainly as the subgenus Fuscospora (presently restricted to temperate climates). This is interpreted as a return to a generally wet, but now cold climate, in which outbreaks of cold polar air and frost were frequent. The transient drying out of a small maritime island and the accompanying vegetation/climate sequence could be explained by a higher frequency of the Sub-Tropical High Pressure (STHP) cells (the descending limbs of the Hadley cells) over New Zealand during the Miocene. This may have resulted from an increased frequency of 'blocking', a synoptic situation which occurs in the region today. An alternative hypothesis, that the global STHP belt lay at a significantly higher latitude in the early Neogene (perhaps 55degreesS) than today (about 30degreesS), is considered less likely because of physical constraints on STHP belt latitude. In either case, the difference between the early Neogene and present situation may have been a response to an increased polar-equatorial temperature gradient. This contrasts with current climate models for the geological past in which the latitude of the High Pressure belt impact is held invariant though geological time. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Recent molecular and morphological studies of the genera Rhipicephalus Koch, 1844 and Boophilus Curtice, 1891 revealed that the five species of Boophilus make the genus Rhipicephalus paraphyletic. Thus, Rhipicephalus Koch, 1844 is not a monophyletic ( natural) lineage and some species of Rhipicephalus are more closely related to the species of Boophilus than to other species of Rhipicephalus. Here, we revise these genera: Boophilus is synonymised with Rhipicephalus, and Rhipicephalus ( sensu lato) ( including Boophilus) is redefined. By synonymising Boophilus with Rhipicephalus, we have changed the nomenclature so that it reflects our understanding of the phylogeny of these ticks. Boophilus is retained as a subgenus of Rhipicephalus, so the synonymy of Boophilus with Rhipicephalus does not result in the loss of the name Boophilus. In addition, Rhipicephalus is a well- known genus and the change proposed is simple - all five species of Boophilus become members of Rhipicephalus ( Boophilus).
Resumo:
The morphology of the exine of Late Cretaceous and Tertiary specimens of Tricolpites reticulatus previously documented from Kerguelen, the Antarctic Peninsula, and the Otway Basin of southeastern Australia has been re-examined and compared with the three pollen types identified in the genus Gunnera. An Antarctic specimen of T reticulatus (Maastrichtian) has a uniform reticulum with elongated lumina, similar to that characterising pollen type 3a of Gunnera macrophylla (subgenus Pseudogunnera). Late Cretaceous (Maastrichtian) Australian specimens of T reticulatus differ; specimens from McNamara resemble pollen of subgenera Pseudogunnera and Milligania of type 3a or type 3b, while specimens of T reticulatus from Princes show more rounded and equidimensional lumina and are therefore tentatively attributed to pollen type 2 found in subgenera Gunnera, Misandra and Panke. Kerguelen Island T reticulatus (Miocene) are distinct from Vega Island specimens: a closer resemblance of Kerguelen T reticulatus and pollen type 2 of extant Gunnera is hypothesised. A comparison between specimens of the North American Tricolpites reticulatus/microreticulatus and pollen of Gunnera is also made. The clear similarity of the North American specimens of Tricolpites microreticulatus and pollen of Gunnera in shape and in the exine surface features of pollen suggests that this taxon should not be separated from T reticulatus but should be treated as a synonym of this species. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In recent years there has been much progress in our understanding of the phylogeny and evolution of ticks, in particular the hard ticks (Ixodidae). Indeed, a consensus about the phylogeny of the hard ticks has emerged which is quite different to the working hypothesis of 10 years ago. So that the classification reflects our knowledge of ticks, several changes to the nomenclature of ticks are imminent or have been made. One subfamily, the Hyalomminae, should be sunk, while another, the Bothriocrotoninae, has been created (Klompen, Dobson & Barker, 2002). Bothriocrotoninae, and its sole genus Bothriocroton, have been created to house an early-diverging ('basal') lineage of endemic Australian ticks that used to be in the genus Aponomma. The remaining species of the genus Aponomma have been moved to the genus Amblyomma. Thus, the name Aponomma is no longer a valid genus name. The genus Rhipicephalus is paraphyletic with respect to the genus Boophilus. Thus, the genus Boophilus has become a subgenus of the genus Rhipicephalus (Murrell & Barker, 2003). Knowledge of the phylogenetic relationships of ticks has also provided new insights into the evolution of ornateness and of their life cycles, and has allowed the historical zoogeography of ticks to be studied. Finally, we present a list of the 899 valid genus and species names of ticks as of February 2004.
Resumo:
Figs are rainforest keystone species. Non-strangler figs establish on the forest floor; strangler figs establish epiphytically, followed by a dramatic transition from epiphyte to free-standing tree that kills its hosts. Free-standing figs display vigorous growth and resource demand suggesting that epiphytic strangler figs require special adaptations to deal with resource limitations imposed by the epiphytic environment. We studied epiphytic and free-standing strangler figs, and non-strangler figs in tropical rainforest and in cultivation, as well as strangler figs in controlled conditions. We investigated whether the transition from epiphyte to free-standing tree is characterised by morphological and physiological plasticity. Epiphyte substrate had higher levels of plant-available ammonium and phosphate, and similar levels of nitrate compared with rainforest soil, suggesting that N and P are initially not limiting resources. A relationship was found between taxonomic groups and plant N physiology; strangler figs, all members of subgenus Urostigma, had mostly low foliar nitrate assimilation rates whereas non-strangler figs, in subgenera Pharmacocycea, Sycidium, Sycomorus or Synoecia, had moderate to high rates. Nitrate is an energetically expensive N source, and low nitrate use may be an adaptation of strangler figs for conserving energy during epiphytic growth. Interestingly, significant amounts of nitrate were stored in fleshy taproot tubers of epiphytic stranglers. Supporting the concept of plasticity, leaves of epiphytic Ficus benjamina L. had lower N and C content per unit leaf area, lower stomatal density and 80% greater specific leaf area than leaves of conspecific free-standing trees. Similarly, glasshouse-grown stranglers strongly increased biomass allocation to roots under water limitation. Epiphytic and free-standing F. benjamina had similar average foliar delta C-13, but epiphytes had more extreme values; this indicates that both groups of plants use the C-3 pathway of CO2 fixation but that water availability is highly variable for epiphytes. We hypothesise that epiphytic figs use fleshy stem tubers to avoid water stress, and that nitrate acts as an osmotic compound in tubers. We conclude that strangler figs are a unique experimental system for studying the transition from rainforest epiphyte to tree, and the genetic and environmental triggers involved.
Resumo:
Cephalosphaera Enderlein is a nearly cosmopolitan genus of big-headed flies (Pipunculidae) which was previously unknown from Australia. Four species have now been found in Australia, all of them undescribed. New species in the subgenus Neocephalosphaera include: C. eukrenaina, C. parthenopipis and C. petila. Only one new species occurs in the nominate subgenus: C. prionotaina. Descriptions and a key to these species are presented.