6 resultados para SPLINE
em University of Queensland eSpace - Australia
Resumo:
A new approach to identify multivariable Hammerstein systems is proposed in this paper. By using cardinal cubic spline functions to model the static nonlinearities, the proposed method is effective in modelling processes with hard and/or coupled nonlinearities. With an appropriate transformation, the nonlinear models are parameterized such that the nonlinear identification problem is converted into a linear one. The persistently exciting condition for the transformed input is derived to ensure the estimates are consistent with the true system. A simulation study is performed to demonstrate the effectiveness of the proposed method compared with the existing approaches based on polynomials. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Background and objectives: The greatest increase in bone mineral content occurs during adolescence. The amount of bone accrued may significantly affect bone mineral status in later life. We carried out a longitudinal investigation of the magnitude and timing of peak bone mineral content velocity (PBMCV) in relation to peak height velocity (PHV) and the age at menarche in a group of adolescent girls over a 6-year period. Methods: The 53 girls in this study are a subset of the 115 girls (initially 8 to 16 years) in a g-year longitudinal study of bone mineral accretion. The ages at PBMCV and PHV were determined by using a cubic spline curve fitting procedure. Determinations were based on height (n = 12) and bone (n = 6) measurements over 6 years. Results: The timing of PBMCV and menarche were coincident, preceded approximately 1 year earlier by PHV. Correlation showed a negative relationship between age at menarche and both peak bone mineral accrual (r = -0.42, P
Resumo:
To investigate the influence of physical activity on bone mineral accrual during the adolescent years, we analyzed 6 years of data from 53 girls and 60 boys. Physical activity, dietary intakes, and anthropometry were measured every 6 months and dual-energy X-ray absorptiometry scans of the total body (TB), lumbar spine (LS), and proximal femur (Hologic 2000, array mode) were collected annually. Distance and velocity curves for height and bone mineral content (BMC) were fitted for each child at several skeletal sites using a cubic spline procedure, from which ages at peak height velocity (PHV) and peak BMC velocity (PBMCV) were identified. A mean age- and gender-specific standardized activity (Z) score was calculated for each subject based on multiple yearly activity assessments collected up until age of PHV. This score was used to identify active (top quartile), average (middle 2 quartiles), or inactive (bottom quartile) groups. Two-way analysis of covariance, with height and weight at PHV controlled for, demonstrated significant physical activity and gender main effects (but no interaction) for PBMCV, for BMC accrued for 2 years around peak velocity, and for BMC at 1 year post-PBMCV for the TB and femoral neck and for physical activity but not gender at the LS (all p < 0.05). Controlling for maturational and size differences between groups, we noted a 9% and 17% greater TB BMC for active boys and girls, respectively, over their inactive peers 1 year after the age of PBMCV. We also estimated that, on average, 26% of adult TB bone mineral was accrued during the 2 years around PBMCV.
Resumo:
The primary purpose of this study was to estimate the magnitude and variability of peak calcium accretion rates in the skeletons of healthy white adolescents. Total-body bone mineral content (BMC) was measured annually on six occasions by dual-energy X-ray absorptiometry (DXA; Hologic 2000, array mode), a BMC velocity curve was generated for each child by a cubic spline fit, and peak accretion rates were determined. Anthropometric measures were collected every 6 months and a 24-h dietary recall was recorded two to three times per year. Of the 113 boys and 115 girls initially enrolled in the study, 60 boys and 53 girls who had peak height velocity (PHV) and peak BMC velocity values were used in this longitudinal analysis. When the individual BR IC velocity curves were aligned on the age of peak bone mineral velocity, the resulting mean peak bone mineral accrual rate was 407 g/year for boys (SD, 92 g/year; range, 226-651 g/year) and 322 g/year for girls (SD, 66 g/year; range, 194-520 g/year). Using 32.2% as the fraction of calcium in bone mineral, as determined by neutron activation analysis (Ellis et al., J Bone Miner Res 1996;11:843-848), these corresponded to peak calcium accretion rates of 359 mg/day for boys (81 mg/day; 199-574 mg/day) and 284 mg/day for girls (58 mg/day; 171-459 mg/day). These longitudinal results are 27-34% higher than our previous cross-sectional analysis in which we reported mean values of 282 mg/day for boys and 212 mg/day for girls (Martin et al., Am J Clin Nutr 1997;66:611-615). Mean age of peak calcium accretion was 14.0 years for the boys (1.0 years; 12.0-15.9 years), and 12.5 years for the girls (0.9 years; 10.5-14.6 years). Dietary calcium intake, determined as the mean of all assessments up to the age of peak accretion was 1140 mg/day (SD, 392 mg/day) for boys and 1113 mg/day (SD, 378 mg/day) for girls. We estimate that 26% of adult calcium is laid down during the 2 adolescent years of peak skeletal growth. This period of rapid growth requires high accretion rates of calcium, achieved in part by increased retention efficiency of dietary calcium.
Resumo:
To investigate whether there are gender differences in the bone geometry of the proximal femur during the adolescent years we used an interactive computer program ?Hip Strength Analysis? developed by Beck and associates (Beck et al., Invest Radiol. 1990,25:6-18.) to derive femoral neck geometry parameters from DXA bone scans (Hologic 2000, array mode). We analyzed a longitudinal data-set collected on 70 boys and 68 girls over a seven year period. Distance and velocity curves for height were fitted for each child utilizing a cubic spline procedure and the age of peak height velocity (PHV) was determined. To control for maturational differences between children of the same chronological age and between boys and girls, section modulus (Z) an index of bending strength, cross sectional area of bone (CSA), sub-periosteal width (SPW), and BMD values at the neck and shaft of the proximal femur were determined for points on each individual?s curve at the age of PHV and one and two years on either side of peak. To control for size differences, height and weight were introduced as co-variates in the two-way analyses of variance looking at gender over time measured at the maturational age points (-2, -1, age of PHV, +1, +2). The following figure presents the results of the analyses on two variables, BMD and Z at neck and shaft regions:After the age of peak linear growth (PHV), independent of body size, there was a gender difference in BMD at the shaft but not at the neck. Section modulus at both sites indicated that male bones became significantly stronger after PHV. Underlying these maturational changes, male bones became wider (SPW) after PHV in both the neck and shaft and enclosed more material (CSA) at all maturational age points at both regions. These results call into question the emphasis on using BMD as a measure of skeletal integrity in growing children
Resumo:
Height, weight, and tissue accrual were determined in 60 male and 53 female adolescents measured annually over six years using standard anthropometry and dual-energy X-ray absorptiometry (DXA). Annual velocities were derived, and the ages and magnitudes of peak height and peak tissue velocities were determined using a cubic spline fit to individual data. Individuals were rank ordered on the basis of sex and age at peak height velocity (PHV) and then divided into quartiles: early (lowest quartile), average (middle two quartiles), and late (highest quartile) maturers. Sex- and maturity-related comparisons in ages and magnitudes of peak height and peak tissue velocities were made. Males reached peak velocities significantly later than females for all tissues and had significantly greater magnitudes at peak. The age at PHV was negatively correlated with the magnitude of PHV in both sexes. At a similar maturity point (age at PHV) there were no differences in weight or fat mass among maturity groups in both sexes. Late maturing males, however, accrued more bone mineral and lean mass and were taller at the age of PHV compared to early maturers. Thus, maturational status (early, average, or late maturity) as indicated by age at PHV is inversely related to the magnitude and late maturers for weight and fat mass in boys and girls. Am. J. Hum. Biol. 13:1-8, 2001. (C) 2001 Wiley-Liss, Inc.