3 resultados para SOFTWARE REUSE
em University of Queensland eSpace - Australia
Resumo:
Object-orientation supports software reuse via features such as abstraction, information hiding, polymorphism, inheritance and redefinition. However, while libraries of classes do exist, one of the challenges that still remains is to locate suitable classes and adapt them to meet the specific requirements of the software developer. Traditional approaches to library retrieval are text-based; it is therefore difficult for the developer to express their requirements in a precise and unambiguous manner. A more promising approach is specification-based retrieval, where library component interfaces and requirements are expressed using a formal specification language. In this case retrieval is based on matching formal specifications. In this paper we describe how existing approaches to specification matching can be extended to handle object-oriented components.
Resumo:
Proof reuse, or analogical reasoning, involves reusing the proof of a source theorem in the proof of a target conjecture. We have developed a method for proof reuse that is based on the generalisation replay paradigm described in the literature, in which a generalisation of the source proof is replayed to construct the target proof. In this paper, we describe the novel aspects of our method, which include a technique for producing more accurate source proof generalisations (using knowledge of the target goal), as well as a flexible replay strategy that allows the user to set various parameters to control the size and the shape of the search space. Finally, we report on the results of applying this method to a case study from the realm of software verification.
Resumo:
Users of safety-critical systems are expected to effectively control or monitor complex systems, with errors potentially leading to catastrophe. For such systems, safety is of paramount importance and must be designed into the human-machine interface. While many case studies show how inadequate design practice led to poor safety and usability, concrete guidance on good design practices is scarce. The paper argues that the pattern language paradigm, widely used in the software design community, is a suitable means of documenting appropriate design strategies. We discuss how typical usability-related properties (e.g., flexibility) need some adjustment to be used for assessing safety-critical systems, and document a pattern language, based on corresponding "safety-usability" principles